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ABSTRACT 

The design of fuel optimum, position and thrust constrained, 

randomly disturbed spacecraft attitude control s y s  tems is a continuing 
9 

engineering problem. A closely related problem is one in which velocity 

i* is directly controllable (here called an antenna steering problem). 

their simplest form these problems are easily reduced to those of mini- 

mizing the fuel expended to maintain a given integral position e r r o r  

squared for randomly disturbed double integrator and single integrator 

sys tems, respectively. 

In 

Among the many potentially useful methods of approaching these 

optimum control problems, that based on Hamilton-Jacobi Theory is 

pursued here. 

f ree  system is well known. A similar equation for the stochastic case 

The Hamilton- Jacobi type equation f o r  the disturbance 

is presented in this study. 

Solutions to these equations a r e  unavailable in general. The 

deterministic Hamilton-Jacobi equations for the problems under study 

here  a r e  solved analytically and a r e  valid for all states and times to go. 

A steady state analytic solution for a stochastic case is presented in 

this study, but the time dependent problem is found to be analytically 

intractable. A s  a result, the stochastic cases a r e  solved approximately 

using numerical techniques. 



Chapter 1 

INTRODUCTION 

- 1.1 Optimum Spacecraft Attitude Control 

There exists a continuing need for investigations into methods of 

improving the design and performance of spacecraft attitude control 

systems. Evidence of this need may be seen regularly in the pertinent 

Further evidence may be seen in the requirements of 1,2 literature. 

future space missions. 

placing increasingly greater demands on attitude control systems in terms 

The trend towards long duration missions is  

of minimum weight and power, and maximum reliability. The performance 

requirements in terms of attitude accuracy, speed of response to distur- 

bances, and dynamic range are simultaneously becoming more  stringent 

due to the requirements of some spacecraft devices, such as highly direc- 

tional scientific instruments, of greater navigational accuracies, and of 

the environmental factors of manned spaceflight. 

1 A reading l is t  and complete references appear in Appendix A. 

R ec en t references include : 

E. I. Ergin, "Current Status of Progress in Attitude Control, ' I  AIAA 
Progress in Astronautics and Aeronautics, XI11 (June, 1964), 7-36; 

J. S. Meditch, "On Minimum-Fuel Satellite Attitude Control, If IEEE 

2 

Transactions on Applications and Industry, LXXXIII, 120- 128; 

M. Athans, "On the Uniqueness of the Extrema1 Controls for a Glas s  
of Minimum Fuel 
Vol. AC-XI, 660-668; and 

Problems, ' I  IEEE Transactions on Automatic Control, 

J. B. Plant, "An Iterative Procedure for the Computation of Fixed- 
T h e  Fuel Optimal Controls, IEEE Transactions on Automatic Control, 
Vol. AC-XI, 652-660. 

1 
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The investigation leading to the results that are described in the 

sequel w a s  concerned with a more  theoretical than practical attitude con- 

trol problem. 

performance available from a given class of control systems. 

Of interest is a quantitative evaluation of the best (optimum) 
c 

Once this 

result  is available, i t  may be used as a "bench mark" against which the d 

performance of actual systems may be compared. 

a model for  the design of approximate systems. 

niques for  designing such approximately optimum sys terns have recently 

It may also be used as 

Several interesting tech- 

3 
been developed. These w i l l  not be discussed further here. 

Attention here  wi l l  be directed to rather idealized attitude control 

situations. The spacecraft kinematics w i l l  be considered to be a mass 

rotating symmetrically about a single axis. Attitude wi l l  be maintained 

by a n  active controller (thruster, jet) imparting a restoring torque to 

cor rec t  any attitude e r ror .  

With respect to figures of mer i t  for system performance Ergin 

points ou that I f . .  . . selection of valid cr i ter ia  is just as important as the 

optimization process. Although Ergin would consider them "constraints 

Three a r e  described in the following: 3 

P. M. DeRusso, R.  J. Roy, R .  W. Mil ler ,  and B. W. Nutting Adaptive- 
Predictive Modeling of Nonlinear Processes,  National Aeronautics and 
Space Administration Report No. CR- 86; 

J. C. Bowers, Optimum Analogue and Digital Attitude Control Systems 
fo r  Space Vehicles (unpublished Sc. D. Dissertation, Washington Univer- 
sity, June, 1964); and 

C. R; W a l l i ,  Finite State Attitude Control, Department of Electrical 
Engineering Report No. USCEE 158, University of Southern California. 

4 
Ergin, loc. cit., p.8. 
-7 
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of the particular mission",the attitude accuracy and amount of fuel used 

for attitude control a r e  clearly important design parameters.  These a r e  

the performance cr i ter ia  used in this investigation. They w i l l  be  treated - 
in terms of a minimum fuel problem: minimize the fuel expended over a 

mission whi le  maintaining a given bound on attitude e r ro r .  

1.2 An Optimum Spacecraft Attitude Control Problem 

1.2.1 A Physical Characterization of the Basic Problem 

The Plant. Consider the simplified spacecraft attitude control 

situation depicted in Figure 1- 1. The figure represents the kinematics 
5 

,/ 

/ 
Figure 1- 1Simple single axis altitude 

control situation 

of a rigid body spacecraft about one of its axes. The motion of the center 

of mass is not of concern, and motions about other axes a r e  assumed to 

be uncoupled with those about this axis, 

For  a more  detailed presentstior& of attitude control dynamics, s ee  
D. B. DeBra, "The LargeAttitude Motions and Stability, Due to Gravity, 
of a Satellite With Passive Damping in an Orbit of Arbitrary Eccentricity 
About an  Oblate Body, I '  Report No. SUDAER 126, Stanford University, 
May 1962. 

5 
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The dynamics of this situation can be described by 

where 8 is the (instantaneous) 

acceleration), I is its moment 

I'e' = ~ F ( t ) 2 r  1 

... .. 
spacecraft attitude ( 8 is i ts  angular 

of inertia, and F(t) is a net disturbing 

force applied symmetrically a t  a radius, r, about the axis. 

city of attitude w i l l  not be considered in the sequel. 

The periodi- 

The Control and Disturbances. The force F(t)  consists of both 

random disturbances and the thrust of the attitude control mechanism. 

The random disturbance sources may be such items as  moments imparted 

during spacecraft separation from the boost vehicle, the movement of men 

and equipment aboard the vehicle, or the starting and stopping aboard the 

vehicle of rotating devices (e. g., tape recorders and gyroscopes). These 

disturbances a r e  all  characterized by time durations considerably shorter 

than those of the system dynamics of interest. This characterist ic is 

precisely that which characterizes Brownian motion and, hence, white 

noise. Thus, the disturbances wi l l  be summarized and represented by 

a zero  mean, white, gaussian random process. 

The attitude control mechanism wi l l  be assumed to be a variable 

thrust device subject to a saturation (magnitude) constraint. This assump- 

tion is a little more general than that of the on-off type jets commonly used 

for attitude control because of their simplicity and reliability; the assumed 

form wi l l  turn out to give results identical to the on-off-on case,  because 
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of the well known result that attitude constrained fuel optimization prob- 

lems, a t  least  in the noiseless case, lead to on-off-on type solutions. 6 

t 
d 

Thus, let  

r F( t )  = m(t)  t n(t) , 

where m(t) is the control torque and subject to 

1m(t)I 5 M = constant , (1 .3)  

and n(t) is the random disturbance process having mean zero  and spectral  

density N I t  should be noted that the presence of the random input to 0' 

the system causes (1.1) to become a stochastic differential equation. 

The Performance Objectives. The objective is to derive a policy 

of control for the thrusters such that the expected total fuel expended for  

attitude control during a mission is made a minimum. At the same time 

the expected average attitude e r r o r  must  be maintained below some bound. 

A mean square e r r o r  definition w i l l  be used here  as is common for this 

type problem. It is well known that this definition produces properties 

which a r e  both physically meaningful and ma thematically convenient. 

This measure also is known to provide identical results to other measures 

for a wide class  of problems,at least for the noise f ree  case. 
7 

6 
M. A thanassiades, "Optimal Control for Linear Time-Invariant Plants 
with Time, Fuel, and Energy Constraints, I '  AIEE Transactions, Pa r t  11, 
on Applications and Industry, LXXXI, 3 2 1-32 5. 

" 
I S. Sherman, "Non-Mean-Square E r r o r  Criteria, I '  IRE Transactions on 
Information Theory, Vol. IT-IV, 125-126. 
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Thus, i t  is required that 
L 

+ 

where t - t  is the specified length of the mission, and p ( t )  is the specified, 

desired attitude. 

f O  7 

8 

It is typical for space vehicles that the desired attitude, except 

for a f e w  isolated attitude maneuvers, is either constant or changes very 

slowly compared to the vehicle attitude dynamics. 

that p ( t )  = p ,  a constant. 

Thus, i t  w i l l  be assumed 

The fuel criterion may be written in integral form: 

Expected Fuel Used = E [ Im(t) 1 dt  (O(to),b(to)] 
n (t) 

The criterion and constraint a s  stated here may be inbedded into a more  

general family of optimization problems by applying the method of Lagrange 

multipliers. 9 This leads to the expression 

which is to be minimized. The coefficient h is the Lagrange multiplier 

and it includes 

The notation En(t)[ g(0, t) 18 (to), 6(to)]will  be used to represent the 
conditional expectation, given 0(t )and b ( t  ), of the quantity g(8, t) with 
respect to the random process n(8. 

See, e. g. , Kaplan, Advanced Calculus, 128-1290 

8 

0 

9 
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from (1.4). It is evaluated from the minimum value of 
1 

the t e r m  - t -t f O  
(1.6) and the constraint equation, (1.4). 

The steady state behavior of the system is of particular interest. 

- In this case, of course, t -t + a. Normally't wi l l  be assumed zero, 
f O  0 

but it w i l l  be useful in some places to car ry  the more general notation. 

It is obvious, of course, that the performance of the optimum system 

must be stable or  at  least  have a stable (and small) limit cycle. 

w 

Problem Statement. The problem having been rather carefully 

developed, it may now be succinctly stated in mathematical t e rms  as 

follows . 

PROBLEM 1- 1. MINIMUM FUEL ATTITUDE CONTROL PROBLEM: Given 

A. A linear, time-invariant, dynamic system described by the 

differ entia1 equation 

where n(t) is a white gaussian random process having mean zero 

and spectral  density N 0; 

B. The restriction that 

where 

= {m(y): m(8, b, t) a measurable function on e, 6, and t E [O, 0 0 ) ;  

I m(t) I5 MI (1.9) 



8 
is the set  of admissible controls; and - 

C. The boundarv conditions 

01 
1. e(to) = e 

and - 
2. Qt,) = eo2. 

Then, find the feedback control, m (e(t), e(t), t) that 
0 

1. 

2. 

3. 

Transfers the system from 

according to (1. 11, 

Satisfies (1.7) and (1.8), and 

(1. 10) 

(1. 11) 
\ . 

Causes the quantity 

+ X [ 0 ( t ) - p ] 2 ] d t \ 9 ( t 0 ) , 6 ( t 0 ) ]  (1. 12) 

for  given X and p to be a minimum. - 
1.2.2 A Related Problem 

There is a problem closely related to Problem 1-1, which is of 

interest  in the sequel. This is the problem of maintaining the position of 

a system for which the velocity rather than the acceleration of the plant 

is controlled. Because these dynamics a re  typical of certain types of 

tracking antennas such as  those used for ear th  tracking of space vehicles, 

this problem wil l  be called an antenna steering problem'? Maintaining as  

much as  possible the notation of the attitude control problem, this problem 

becomes the following. 

Such an antenna, rotating a t  sidereal rate and a faster slewing rate,  is 
described in K. W. Linnes, W. D. Merrick, and R. Stevens, "Ground 

10 

Antenna for Space Communication", IRE Transactions on Space Electronics 
and Telemetry, Vol. SET-VI. 
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PROBLEM 1-2. MINIMUM FUEL ANTENNA STEERING PROBLEM: - Given 

A. A linear, time invariant, dynamical system described by 

the differential equation 

I k = r F(t), 

where 

r F(t) = m(t) t n(t) , 

(1. 13) 

and where n(t) is a white gaussian random process having 

0; mean zero and spectral  density N 

B. ' The restriction that 

where 

% = {m(t): m(6, t) a measurable function on 8 and t E [ 0, = I ;  

is the set  of admissible controls: and - 
C. The boundary condition 

Then, find the feedback control, rn (9( t ) ,  t) - that 
0 - 

1. Transfers the system f rom 8 01 

according to (1 .13)  and (1. Z), 

2. Satisfies (1.8) and (1 .  14), and - - 

(1. 10) 

3. Causes €he quantity 



for given X and p - to be a minimum. 

10 

(1. 15) 

I. 3 Normalization 

I t  is useful to investigate the dimensionality of the relations found * 

in Problems 1-1 and 1-2. This not only wi l l  allow the -elations to be 

somewhat simplified, but a l so  w i l l  permit the results of a single optimi- 

zing analysis to be applied in a known way to several  physical cases. In 

the first section below the preliminary step of removing the reference 

input, p , from the equations is performed; in the second, dimensionality 

is used to determine the minimurn se t  of necessary parameters in the 

equations. 

1.3.1 The Reference Input 

Let a new position variable, cp(t), be defined by the relation 

e( t )  = cpw + P (1. 16) 

Upon substitution for the occurrences of e(t) in Problems 1-1 and 1-2, 

there results from (1. l),  (1. 10) (1. ll), and (1.12),respectively, 

and 

Thus, the reference input p may a lways  be taken a s  zero. Fo r  arbi t rary 
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reference input, the results of the zero input case hold with a simple 

change of variable of the form (1.16). 

1.3 2 Non-Dimensionalizing 

Problems with dimensionless variables m a y  be derived from 
4 

Problems 1-1 and 1-2. 

In each relation the capital le t ter  represents an  undetermined charac- 

teristic dimension of the problem, and the new lower case  letter repre-  

sents a non-dimensional problem variable. 

To this end the following relations a r e  defined. 

Also for convenience le t  

Note that then 

and 

t * =  T t  

* 
x(t ) = @%(t)  

u(t ) = Lm(t)  
* 

. dx y = x = - .  dt 

a x = x(t,)= @9(t,) , 
0 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

Substitution into (1.1) and (1.12) of Problems 1-1 and 1-2 yields 

- 1 
2 *  - - u + T  n ( t )  (1.23,) 

1 
dt L 

2 2  T d x  

and 

11. The noise t e r m  must be scaled in amplitude when the time scale is 
changed. See L. Levine, Methods fo r  Solving Engineering Problems, 350. 
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The selection of values for T ,  0, and L may be made arbitrarily. 

It w i l l  be useful to require that 

I U I  5 1 (1.25) - 

Then, 
m 

(1.26) 1 
M '  

L =  - 

Substitution into (1.23) and (1.24) and rearranging leads to 

0 

IT 
u t  - OM 

2 

2 
d x  - 

3 / 2 n s  
- - -  
dt*2 IT 

and * 

Now s e t  

and 

These yield 

and 

- -  - 1 ,  
x 

MO 
2 

- -  O M - 1 ,  

IT 

1 / 2  O =(E) x 

1 / 4  
T =  . 

After introducing a normalized cost, 

114 
J = min P(-&)= rnin P( - x ) U d  u ueu  ~ 3 1 ~  

(1.27) 

(1.28) 

(1.29) 

(1.30) 

(1.31) 

(1.32) 

(1.33) 
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which includes the required minimization operator, (1.27) and (1.28) 

become 

and 

1 

u t ( $ ? n ,  

Here U’= tu :  u = Lm, ,ET]. 
Finally, introduce the parameter 

(1.34) 

(1.3 5) 

(1.36) 

The reasons for this particular choice wi l l  be c lear  in the sequel, but 

cannot readily be justified a t  this time. I t  w i l l  turn out that d is the only 

required parameter for the normalized versions of the basic problems. 

This substitution leads to the following expression fo r  (1.34): 

4nMd 

dt *2 N ~ T ~  

2 
- -  d x -  u t ( - - , In .  (1.37) 

Problems 1-1 and 1-2 w i l l  now be restated in normalized forms. 

This wi l l  se rve  both to summarize the present section and to provide a 

convenient form of problem statement for reference in the sequel. The 

star on the new time variable wi l l  now be dropped. 

variable for the antenna steering problem wi l l  be y rather than x in order 

to make the two problems look as similar as possible. 

Also, the position 
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PROBLEM 1-3.  ATTITUDE CONTROL PROBLEM: Given 

A. A linear, time invariant, dynamical system described by the 

differential equations 

(1.38) 

and - 
i. = u(t) t (e&> n(t) , (1 .39)  

"0.' 

whefe n(t) is a, white, gaussian, stochastic process having 

mean zero  and spectral density No; 

B. .The restriction that 

(1.40) 

where 

u = fu(t): u(x, y, t) a measurable function on x, y,, and t E [ 0, a); 

I u(t)l 5 1 3  

is the se t  of admissible controls; and - 

C. The boundary conditions 

1. x(tO)= xo  

2. Y(tO)'  Y o .  

and - 

Then find the feedback control, u (x, y, t), that, - 0 -' 
X 

o \  (Yo J 
1. Transfers the system from 

according to (1 .38)  and (1 .39) ,  

(1.41) 

(1 .42)  

(1 .43)  
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2. Satisifes (1.40) and (1.41), and 

3. Causes the quantity 
L 

to assume the indicated minimum. 

(1.35) 

PROBLEM 1~4. ANTENNA STEERING PROBLEM: Given 

A. A linear, time invariant, dynamical system described by 

the differential equation (1.39), where n(t) -- is a white, gaussian, 

stochastic process having mean zero  and spectral  density, N - 0 ’  

B. The restriction B of Problem 1-3; - and 

C. The boundary condition (1.43). 

Then, find the feedback control, u (x, y, t), that  - 0 - 
1.  transfers the sygkm from y according to 

p* 39) ,  

2. Satisfies (1.40) and (1.41), and - 
3. Causes the quantity 

to assume the indicated minimum. 

1.4 Available Methods of Analysis and Related Problems 

1.4. 1 Available Methods of Analysis 

(1.44) 

Except for  a few special methods there a r e  three basic approaches 
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to the solution of the stated problems. These may be roughly identified 

by their association w i t h  (1) the Maximum Principle of Pontryagin, 

(2) Hamilton-Jacobi theory, o r  (3) approximation methods. 

two classes  of methods a r e  more  o r  l e s s  analytical, while the las t  tends 

The f i r s t  

to be numerical. A s  might be expected, the available techniques a r e  

much more  highly developed for  the deterministic cases (n(t) 0)  than 

for  the stochastic situations. 

Since the work described in the sequel concentrates on Hamilton- 

Jacobi techniques, these methods w i l l  not be described here. The other 

two approaches wi l l  be discussed in the following paragraphs, both for 

deterministic and stochastic cases. 

The Pontryagin Maximum. Principle for deterministic sys tems is 

12 
a highly developed tool. The primary obstacle to the application of this 

technique i s  the open loop nature of the resulting optimum control. When 

a feedback control is required, i t  mus t  be synthesized by special techniques 

that usually involve some form of trajectory tracing. When switching 

curves a r e  involved in the control law,  and when the switching curves do 

not fall along trajectories, the control may involve an infinite number of 

switchings and rather  special methods must  then be applied to identify the 

switching curves . 

. 

L. S. Pontryagin, et. al.,  The Mathematical Theory of Optimal 
Pr messes .  
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Such is the case for Problem -13. A solution to this (deterministic) 

problem by the maximum principle is straightforward (although numerical 

computation may be required to solve the resulting two point boundary value 

problem). l3 The resulting optimum control has the f o r m  of a time function 

prescribed for  each initial state. 

a given time interval of operation (i. e., a given time to go) essentially 

involves locating a set  of switching curves. 

Then, synthesis of a feedback control for 
.. 

This may be done by recording 

the optimum switching point locations for several  different initial states 

and fitting a curve (such a s  a least  squares polynomial) through these 

locations. If the switching points converge to particular curves as the 

given time interval grows indefinitely, these curves a r e  the optimum steady 

state switching curves for the system. 

A maximum principle for  stochastic, continuous-time systems 

apparently has not been developed. This is not to surprising, because 

an optimum stochastic system is of necessity a feedback system, while 

the maximum principle leads naturally to non-feedback solutions. Some 

development of feedback maximum principle approaches to discrete time 

"Typical treatments of these computations may be found in C. W. 
Merrian 111, Optimization Theory and the Design of Feedback Control 
Systems, Chapter 10 

and 
M. D. Anderson and S. C. Gupta, "Backward Time Analog Computer 
Solutions of Optimum Control Problems", Proceedings AFXP Spring 
Joint Computer Conference 1967, 133- 139. 
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sys tems has been accomplished. 14* 

methods to discrete time approximations to Problems 1-3 and 1-4 has 

A cursory investigation of these 

revealed that the 

one might expect 

. very lengthy. In 

methods do yield results wi th  some of the properties 

for these problems, but the calculations involved a r e  

addition, there exist some problems in verifying the . 

properties required to establish the applicability of the methods. 

There a r e  several  approximation techniques applicable to deter-  

ministic cases  of the given problems. 

ming, s teepest descent in function space, and parameter optimization 

techniques. 16' l7 In the latter technique some form for the switching 

curves (i. e., the feedback control l a w )  mus t  be assumed, after which its 

These include dynamic program- 

parameters  may be optimally selected. Because straightforward analytical 

solutions a r e  available for the given problems, i t  seems superfluous to give 

very much attention to approximation methods for deterministic cases. 

There a r e  two primary approximation approaches to the stochastic 

problems that warrant consideration. The f i r s t  of these is dynamic 

~ 

'*H. D, Kushner and F. C. Schweppe, "A Maximum Principle for Stochas- 
Journal of Mathematical Analysis and Applications, tic Control Sys tems, 

VIII, 287-302. 

15D. D. Sworder, "On the Control of Discrete Time Stochastic Systems, 
Department of Electrical  Engineering Report No. USCEE 145, Univer- 
sity of Southern California. 

R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming. 

A. E.. Bryson and W. F. Denham, "A Steepest-Ascent Method for 
Solving Optimum Programming Problems, ' I  ASME Journal of Applied 
Mechanics, LXXXIV, 247-257. 

16R, E. Bellman, Dynamic Programming, or  

17 



programming. l5 Dynamic programming may b e  applied directly to 

discrete approximations to  the given problems, While i t  is not obvious 

19 

that all of the properties required to  prove convergence can be verified, 

this is not so great a drawback as is the well known Itcurse of dimension- 

ality". 
18 

This curse manifests itself in  excessively long computation times. 
* 

The second approximation approach requires the f o r m  of the control 

law to be assumed. This reduces the optimization problem to a parameter 
I 

optimization problem. The parameters may be estimated using such tech- 

niques as the stochastic approximation of Robbins and Monro. It is very 

likely that a formulation based on stochastic approximation wil l  fall outside 

the presently verified sufficiency conditions of convergence, but this 

approach should be considered only as  a las t  resor t  anyway. 

it is essentially a method which delivers an answer without any rea l  con- 

19 

This is because 

comitant insight into the problem. 

An approximation approach that should a150 be noted is that of 

18 
The computation times, using a dynamic programming formulation of 
the attitude control problem implemented early in this study, were two 
orders  of magnitude higher than those using the numerical techniques of 
Chapter 5 as indicated by a coding analysis. 

19 
H. Robbins and S. Monro, "A Stochastic Approximation Method", Annals 
of Mathematical Statistics, XXII, 

A good introduction to this technique is given in  D. J. Wilde, Optimum 
Seeking Methods. 

A good recent survey of this technique appears in N. V. Loginov, 
"Methods of Stochastic Approximation", Automation and Remote Controll 
XXVII, 185-204. 
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simulating the system on, say,  an analog 

runs with various parameter settings. I t  

computer and making repeated 

should not take too long with 

such a technique to find a feedback control that yields a relatively low 

cost. 

minimum has been found. 

The problem here  is that one can never be s u r e  that an absolute 

In many respects this simulation approach 

shares this difficulty with the previous stochastic approximation approach. 

1.4.2 Related Problems 

The previous section has reviewed methods potentially applicable 

to solving the given problems. These methods may o r  may not have been 

applied to problems a s  specific a s  the given problems. This section is 

intended to briefly survey some of the results available for problems 

whose formulations closely resemble Problems 1-3 and 1-4, but which 

differ in some significant way. 

Unc ons trained Fuel, Quadratic Cos t Problems. For  both the 

deterministic and stochastic cases ,  solutions a r e  available for the 

problems arising from 1-3 and 1-4 when (1.3) is not required and when 

(1.35) and (1.44) a r e  replaced respectively by 

J = min 
u4 u 

and 

J = min 
U E  u 

L 

(1.45) 

(1.46) 

The control law for these problems turns out to be linear feedback, and 
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the coefficients are readily computed, being the solutions to matrix 

Ricatti differential equations. The computation must  usually be numeri- 

20 
cal. 

Constrained Fuel, Quadratic Cost Problems. The introduction 

of a fuel constraint into the quadratic cost  problem eliminates the possi- 

bility of linear feedback control l a w s  (unless the position e r r o r s  are quite 

small). 
21 

The deterministic problems are essentially solved by Athans 

in the previously cited reference. The stochastic problems have not been 

solved, apparently, and they can be shown to possess nonlinearity diffi- 

culties very similar to those encountered in the sequel. 

Cons trained Fuel, Quadratic Position E r r o r  Problems. When 

the control energy or fuel term is dropped completely from (1.45) and 

(1.46), another class of problems develops. 

limiting case of Problems 1-3 and 1-4: 

This class is really a 

the case  when X+ 03 in  (1.6). 

These problems have been investigated thoroughly in the deterministic 

case by Fuller and his associates a t  Cambridge. Some of the results and 

references appear in Section 3.1 below. Stochastic problems in this 

class apparently have not been treated to date. 

Fuel Optimum Problems. One l a s t  c lass  of problems wi l l  be 

20 
F o r  a discussion of the deterministic case, see 
M. Athans and P. L. Falb, Optimal Control, Chapter 9. 

The stochastic case  is discussed in 
J. J. Florentin, "Optimal ControL of Continuous Time, Markov Stochas- 
tic Systems," Journal of Electronics and Control, X, 473-488. 

7 1  
L I I  

See, e . g . ,  M. Athanassiades, loc. cit. 



considered. In 

22 

his class the integral position e r r o r  term is dropped 

from (1.45) and (1.46). (This corresponds to letting X * O  in (1.6).) In 

its place a target set ,  or enforced terminal state, is imposed, s a y  

x(tf) = y(tf) = 0. Of course, this problem makes sense only in the deter-  
~ - 

22 
ministic case,  and i t  has been treated rather fully. 

The remainder of this report  w i l l  be concerned with the principal 

topic of this effort:namely, Hamilton- Jacobi related approaches to the 

solution of Problems 1 - 3  and 1-4. 

See, e. g., M. Athans and P. L. Falb, op. cit., Chapters 6 and 8. 22 



Chapter 2 

A HAMILTON-JACOB1 EQUATION TYPE FORMULATION OF THE 

PROBLEMS 

In this chapter partial differential equations of the Hamilton- 

Jacobi type will be derived from the properties of Problems 1-3 and 1-4. 

The basic properties will also be shown to imply certain properties of the 

cost surface and switching curves, which will be needed later for solving 

the equations. 

second treats the stochastic problem. 

The f i r s t  section below treats the noise-free case; the 

2. 1 Deterministic Case 

2. 1. 1 Derivation of a Hamilton-Jacobi Type Equation 

In this section Problems . l -3  and 1-4 will be treated in the noise 

free case,  that is, with 

n ( t )  E 0. (2. 1) 

In this case the expectation may be dropped from the cost 

relations, (1,35) and (1,44) because of the fact that the integral is no 

1 
longer a random variable. 

There are two basic methods which permit the stated problems 

to be converted into problems involving the solutions to  partial  dif- 

ferential  equations of the Hamilton-Jacobi type, These methods will be 

/ 
This follows L. I. Rozonoer, ItL. S. Pontryagin Maximum Principle in  the 1 

Theory of Optimum Systems'', Automation and Remote Control, XX, 
1288-1302, 1405-1421, 1517-1532. 
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2 
called the methods of Bellman and Kalman for obvious reasons. 

Following Kalman the results may be written down immediately. 

Problem 1-3. 

For Problem 1-3 the Hamilton-Jacobi type equation is 

aJ  aJ aJ 2 - - = m i n { u - + y - + x  + l u l l .  
ay a x  

U C U  

Problem 1-4. 

For Problem 1-4 the Hamilton-Jacobi type equation is 

If (2. 2 )  and (2. 3 )  are interpreted strictly, they are  applicable 

only at the ini t ia l  time, t * but i f  the initial time is considered variable, 

then these equations may be interpreted as applicable at any time. 

will be convenient to make a change of variable and t reat  (2.2) and (2. 3) 

in terms of time to go, T. 

the system. Let 

0' 

It 

This is possible because of the autonomy of 

L For Kalman's approach see: 
R. E. Kalman, "The Theory of Optimal Control and the Calculus of 
Variations, 'I ed. R. Bellman, Mathematical Optimization Techniques, 
309- 33 1. 

or 
M. Athans and P, L, Falb, Optimal Control, 355-363. 

For Bellman's approach, see for example: 
R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming, 
Chapter 5. 

or 
C, W, Merr iam 111, Optimization Theory and the Design of Feedback 
Control Systems, Chapter 5 .  
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and 

T = t f - t  

T = t  - t  
0 f 0 '  

(2.4) 

Then (2.2) and (2.3) may be replaced by the equations, 

aJ aJ 2 - m i n [ u - t y -  t x  l u l l  a3 - -  
ay ax u e IJ a7 

and 

aJ  a J  2 - = m i n  f u - + y  t l u l l ,  
a Y  u c u  a7 

respectively. 

will be adopted: the condition T = 0 rather than the system initial condition, 

In the sequel the following terminology with respect to T 

will be called the initial condition for the partial differential = To' 
equation. The latter will be called the terminal condition, 

2. 1.2. Propert ies  of the Cost Surfaces and Switching Curves 

Several  properties of the cost surfaces and switching surfaces  

associated with Problems 1-3 and 1-4 or  equations (2.2) and (2.3) are 

stated and justified in the paragraphs that follow. The justifications- fall 

somewhat short  of being mathematical proofs, although in general they 

do sketch out possible proofs. The properties are stated in Problem 1-3, 

The corresponding properties for  Problem 1-4 follow in an  obvious way. 

PRQPERTY 2. 1-1, INITIAL CONDITION: For all values of the state variables, 

the initial cost (7 = 0) is zero. 

This property is a direct  resul t  of the equation defining the 
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cost: namely (1.6). Whenever T = 0 (i. e . ,  tf = t ) in this equation, it is 0 

PROPERTY 2. 1-2. SYMMETRY: Problem 1-3 is unchanged under a change 

of variables of the form 

x + - x  

Y + -Y 

J u -b -u. 

This property is easily verified by reference to the basic 

problem equations with n( t )  z 0 - - in particular (1.38), (1 39) ,  (1.41), 

and (1.35). 

(2. 2). 

It may also be verified i n  the Hamilton-Jacobi equation, 

This property is one of symmetry about the origin of state space. 

PROPERTY 2. 1-3. EXISTENCE OF CHARACTERISTIC CURVES AND TRAJECTORIEZ -- 

There is a family of curves in phase space, (X x Y X T) ,  intrinsicly 

defined by the Hamilton-Jacobi equation. These curves are the 

trajectories of the system, Their projections onto the cost  surface 

I a r e  called characterist ic curves,  

Consider the general total derivative of the cost  surface along 

some curve, s: 

-26- 



( 2 . 9 )  

Comparison of this equation with (2.6) after substitution of the optimum 

control, ug, indicates that the parametric curve described by 

d7 
ds  
_.- - 1  

dx 
de -Y - =  

dY - ds  = -'o 

( 2 . 1 0 )  

(2. 1 1 )  

(2.  12) 

is characterist ic of the equation, In fact, after allowing for (2. 4) and 

(2. lo ) ,  (2,  1 1 )  and (2, 12) become the equations for the trajectories of 

the system, (1-38) and (1-39) ,  The projections of these trajectories 

onto the cost surface,  J, are the curves commonly called characterist ic 

(or integral) curves of the optimized equation, (2,2) with u. 3 

PROPERTY 2.1-4. CONTINUITY OF THE COST SURFACE: Over&the entire phase -- 
space the cost surface is continuous. 

This is a fact deducible f rom the basic problem statement. It 

follows by noting properties of integrals of solutions to differential 

4 equations. Since this is discussed by Fuller,  further justification will 

not be presented here,  This property is an assumption in the derivation 

J 

Integral curves are discussed i n  I, N, Sneddon, Elements of Par t ia l  
Differential Equations, chaps, 1 and 2. 

I 

A, T, Fuller,  "Optimization of Some Non-Linear Control Systems by 
means of Bellman's Equation and Dimensional Analysis, I' International 
Journal of Control, 111, 362-363,  

4 
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5 of the Hamilton- Jacoby type equations. 

. .  

PROPERTY 2.1-5. OPTIMALITY OF ON-OFF-ON CONTROLS: 'The optimum cc 

u , is of the on-off-on type, 
0 

' U  0 = , ~  

In particular, the condition 

> 1  hJ 
by - - -1 

0 1 q < 1  
a Y  - 

-1 bJ 
aY - 
- 1 

(2. 13) 

dJ A - dez (-) 
a Y  - - 

6 is necessary. 

Performing the indicated minimum operation of (2.2) at each 

time instant leads to the necessary condition for the optimum control, 

(2, 13). This is a three state, bang-coast-bang, or on-off-on type control. 

PROPERTY 2.1-6. CONTINUITY OF DERIVATIVES. In every region of phase 

space for which the optimum control, u (x, y, T), is continuous in all of 
0 

continuous. 

This property is made evident by referring to (1.35) with 

See the references of footnote 1, 

Values for u 

on the results,  

aJ 
0 a Y  

at 1-1 = 1 are ambiguous, but they have no effect 4 
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n(t) 0 and applying Leibnitz's rule along with the continuity properties 

798 of the solution to differential equations, 

NOTE: The three properties which immediately follow (Properties 2, 1-7, 

2, 1-8, and 2. 1-9) are justified in rather intuitive terms, 

are reasonable if the various derivatives involved behave well enough, but 

the difficulties that may arise when this is not t rue (as, for example, when 

a derivative becomes unbounded somewhere) are not considered, 

if these three properties are instrumental in leading'to a solution of the 

- -  
The justifications 

Nevertheless, 

Hamilton- Jacobi equation, (2, 6) ,  which meets the initial boundary 

condition, Property 2. 1-1, then the resulting solution is in no sense 

suboptimum, 

be both a necessary and sufficient condition for  a solution to  the basic 

This is because the Hamilton-Jaeobi equation is known to 

problem. 

will be at least  as good as any other possible solution. 

If the three properties lead to  a solution, then this solution 

PROPERTY 2.1-7. EXISTENCE AND SMOOTHNESS OF SWITCHIMG SURFACES: .- ..,- 

The loci of switching points form continuous surfaces. These surfaces 

are called switching surfaces,  and they are smooth in the phase variables, 

x ,y ,  and T. 

The idea behind justifying this property is that the switching 

surfaces are the intersections of regions of constant control, The cost . 

surface within each of these regions is smooth (its derivatives are 

For  Leibnitz's rule see J,  M, H, Olmsted, R e a l  Variables, 416-418. 7 

For  continuity properties see E.A. Coddington and N. Levinson, Theory 
of Ordinary Differential Equations,chaps. 1 and 2. 

8 

a 
' See, eg., Kalman, loc. cit. -- -29- 



continuous--see Properties 2. 1-4 and 2.1-6)  thus guaranteeing the 

existence and continuity of the gradients of each surface at an intersection. 

The two gradients along the intersection must  have the same projection 

into phase space (by the very nature of an intersection), and this projection 

is precisely the gradient of the switching surface. 

linear transformation, which preserves  continuity so that the switching 

surface has a continuous gradient, 

PROPERTY 2.1-8. CONTINUITY OF-DERIVATIVES OF J: Over the entire phai 

space all of the first partial derivatives of the cost  with respect to the 

d 

Now, a projection is a 

phase variables are continuous. 

Consider a derivative of the cost surface in the direction of any 

curve, s, in the switching surface, In particular, calling on symmetry, 

consider only the intersection of the cost surfaces for regions where, 

rexpectively, u = 0 and u = - 1  are the optimum controls. Then, 
0 0 

-1 dJ dJO - = -  
ds ds  (2. 14) 

because of continuity, Property 2. 1-4, Equation (2. 14) may also be 

written 

where V J is the gradient of the cost  surface corresponding to the 
U 

(2. 15) 

optimum control u evaluated at the switching surface (perhaps as a 

limit), and a = (aT, a , a ) is the tangent vector to the curve s. t If 
X Y  

-30-  



VS = (1, 8 , fl )t is a normal to the switching surface, then it is clear 
X Y  

that 

c 

or  

t 
a * T S  = 0 (2. 16) 

c 

a = a S  - a @ ,  (2. 17) x x  Y Y  

After substituting the value of the optimum control, (2. 6) becomes 

U 2 
bJ 

U 
aJ a J  

U -= -  Y + - - - U +  1.1 + x ,  u = 0, -1, 
a7 ax a Y  

(2, 18) 

Substituting (2. 18) and (2. 17) into (2. 15) and rearranging t e rms  leads 

to the relation 

X 

Now, after accounting for (2, 17), equation (2. 16) is valid for any a and 

a , 
Y 

X 

Thus, (2, 19) can be true only if the coefficients of a and a therein 
Y X 

are simultaneously zero. That is 

and 

simultaneously, 

and (2.21) yields 

(2.20) 

(2.21) - 1  3J 
- ( I + @  1- + p  = o ,  

aJO aJ a J  

ax ax a Y  Y a Y  

0 I - 1  - - - + +  
Y - B y  Y 

Eliminating the term - - - between (2.20) ""-'I ax 
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Now, Property 2. 1-5 indicates that 

and 

(2.22) 

(2.24) -1 
3 Y  - 

i)J 
7 1. - 

Furthermore,  it is reasonable to require that any trajectory intersecting 

the switching surface continue in the new region in a direction away from 

the old region. This is equivalent to saying that the projection on the 

gradient vector for the switching surface tangent vector to each of the 

trajectories will be required to yield identical signs. By reference to 

Property 2, 1-3, the tangent vector to the trajectories is 

(2.25) 

Then, the requirement is that 

(2.26) t t 
(VS s o w s  * s  1) = (1-8 X y)tl-Bxy + PY)  2 0. 

-1 Requirement (2.26) guarantees that the coefficient of - in (2.22) 

is positive. 

3J 

a Y  
Applying (2.23) to (2.22) then yields 

or 

- 32- 
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( 1 - B  Y + B 1 (1-Bxy+B ) aJ 
( 1 - BxY 1 a Y  ' 

- 1  X 
(2.28) - 

. or  

- 1  ZIJ 
1>-. (2.29) a - a Y  

Considering (2.24), then, 

- 1  aJ 
-=  1 (2. 3 0 )  
aY 

at the switching surface. 

- 1  8J 
Solving (2.22) for - yields aY 

Inequality (2.26) ihdicates that the coefficient Qf a JO 
positive. Applying (2.24) to (2. 31) yields 

is - 
a Y  

1 <  (1 - BxY) --+A, a J O  B 
- ( 1 - ~  Y+B ay ( ~ - B ~ Y + B  

Y X Y  

(2. 32) 

o r  

o r  

aJO l e - ,  - a Y  

Considering (2.231, then, 

(2.33) 

(2.34) 

- -  - 1  a JO 
a Y  
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a t  the switching surface. 

a J  
It is now clear that - is continuous across  the switching surface 

a Y  

as long as one of the trajectories does not lie in the switching surface. 

The effect in the latter case is to make, for example, the coefficient 
-B 

(l-Bxy) in (2. 20) to be zero. Then (2,  30) is a clear result  f rom (2.20) 

anyway, and the knowledge that the u = 0 trajectory is on the switching 

surface more  than compensates for the unavailability of condition (2. 35). 

0 

a5 
a Y  

Once i t  is known that - is continuous across  a switching surface, 

aJ the same result  for - follows directly f rom (2. 20) or (2.21). Furthermore,  
ax 

aJ the continuity of - is then directly deducible f rom (2. 14) or (2. 15). 
a7 

PROPERTY 2. - 10. A+NECESSARY CONDITION AT A SWITCHING SURFACE: At - 
a switching surface separating regions where u = 0 and u = u are the 

optimum controls 

0 - 0 

- -u , u e[-1,1') ,  bJ 
bY 
_I- 

There are no switches between u = -1 and u = +1 or  vice versa. 
0 - 0 

Condition (2.. 36) follows directly f rom (2. 30) and (2. 35) for 

u =-1 and by symmetry, Property 2. 1-2,  for u = +1, 

(2. 36) 

To justify the last part  of the prope'rty consider the equivalent 

of (2.22) for a u = 1 to u = -1 switch. (This is easily derived, ) 
0 0 

- 34- 
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Then, the equivalent to (2.27) is 

% 

and the .equivalent to (2.29) becomes 

"1 1(a,* 

(2. 38) 

(2.39) 

By Property 2. 1-5 this is clearly impossible. 
3J 

for - . 
PROPERTY.2.. l ~ l - .  ANOTHER BOUNDARY CONDITION: The minimum cost at the 

An equivalent result  holds 

- 1  
a Y  

- __ - 
origin of state space is zero regardless of time to go. 

Consider the control u E 0. Then, (1-35) together with (1-38) 

This is clearly minimum, since 

0 

and (1-39) imply J = 0 when n(t) E 0. 

J > 0 everywhere. - 

2.2 Stochastic Case 

This section will repeat the developments of Section 2. 1 under 

the assumption that (2, 1) does not hold. 

problem will be considered. 

That is, the full stochastic 

Whenever possible, results will be stated 

based on the development of the previous section, 

2.2. 1 Derivation of a Hamilton-Jacobi Type Equation 

2.2. 1. 1 Background 

There currently exists a considerable garner of methodology 

applicable to systems governed by stochastic differential equations. This 

s tore  stems from the basic work .of Einstein and Wiener on Brownian motion 
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and more or  l e s s  reaches maturity i n  the Chapman-Kolmogorov and 

Fokker-Planck relations, 

and properties of white gaussian noise have derived. 

it should be pointed out that the disturbance process n(t) of Problems 1-3 

and 1-4 is defined precisely as the formal  derivative of the Wiener 

It is from these efforts also that the concepts 

In this respect I 

-8 

10 
pr oces s. 

Problems 1-3 and 1-4 may be reformulated such that the performance 

criterion becomes that of minimizing the sum of the expected values of 

the state variables of an  augmented system. This is a common 
11 

technique employed in relation to the Pontryagin Maximum Principle. Then, 

in the reformulated form eithCr the Fokker-Planck or  the Chapman- 

Kolmogorov equations for the augmented system may be used to derive 

a partial differential equation whose solution also yields a solution to 

the basic problem. 

ferential equation of the Hamilton-Jacobi type derived previously for the 

This equation closely resembles the partial dif- 

deterministic problems. For  this reason i t  will be called a Hamilton- 

Jacobi "type" partial differential equation. 

The derivation of the Hamilton-Jacobi type equations f rom the 

Chapman-Kolmogorov equation is described in a paper by - 

10 
J, L. Doob, Stochastic Processes ,  96- 98, 

11 A good explanation of this reformulation appears in L, I, Rozonoer, 
"L, S. Pontryagin Maximum Principle in the Theory of Optimum 
Systems, ' I  P a r t  I, Automation and Remote Control, XX, 1282-1302, 
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12 
Florentin. Derivation f rom the Fokker-Planck equation for cases  where 

the control input, u(t), is specified is well known, 13 For  cases  where 

the cost is a functional on u(t), the derivation f rom the Fokker-Planck 

equation appears straightforward, but no derivation has been found in 

the literature. The derivation which follows is based on Florentin's 

work, leaving a derivation from the Fokker-Planck equation to some 

future report. 

d 

2.2. 1.2 The problems reformulatdd 
Following Rozonoer / let the vector 

(2.40) 

where 

J = m i n  E n [ V I  Xo' Yo] 
u e u  

(2.41) 

(2.42) 

14. 
all from Problem 1-3. Then the performance criterion (1-35) may be 

restated as 

J = m i n  E [b t  z l  n 
U @ U  

(2.43) 

J. J. Florentin, "Optimal Control of Continuous Time, Markov, 
Stochastic Systems, I '  Journal of Electronics and Control, X, 473-488. 

A good summary appears in T. K, Caughey, "Derivation and Ap- 13 

plication,, , ,, 1 1  Journal of the Acoustical Society of America, XXXV, 
1683- 1692. 

This follows Rozonoe'r, loc. cit. 14 -- 
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where 

and the 

becomes 

t 

(2.44) 

X 

”g 
z0=[ :”). (2.45) 

denotes the transpose vector. For  Problem 1-4, (2.40) 

z = ( : ) ,  

(2.42) becomes 

(2.44) becomes 

and (2.45) becomes 

b$) 9 

z =  0 (:)* 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

2.2. 1. 3 The Derivation 

Consider the following fo rm of the Chapman-Kolmogorov 

A = equation used by Florentin for  the intermediate phase (z + A 2  t +At 
0 d o  0 

(z(tO+Ato), t + At ) near (z t ) : 
0 0 0’ 0 

p(z, t ] z  +Az t + A t o )  
p(z, $1 Z0’ to) = J f 0 0 ’ 0  z +Az 

0 0  

(2. 50) 

p(z +hz t +At61zo, tO)d(zO+AzO) 
0 0 ’ 0  



where t < t -k A t  etf, 

system state is in the neighborhood dz of state z at the 

p(z, t f lzO,  to)dz is the probability that the 
0 0  0 

L was in state z at to, and p(Azo, A t  0 1 z 0’ t 0 ) is the proba 0 

function of changes in the system position up to  and including Az w 

the state is z 

Then, for either Problem 1-3 or  1-4, 

9- 0 

0‘ at t 0 0’ l5 From (2.43), clearly J depends on 

(2.51) 

Applying the Chapman-Kolmogorov equation and changing the order of 

integration yields 

(2. 52) 

Careful inspection of (2.52) reveals that the inner integral must be a 

minimum over u c U in order for  the whole expression on the right to be 

minimum. Then, comparing (2. 51) with the minimurn of the inner 

integral of (2. 52) leads to the relation 

Florentin, loc, cit. 15 -- 

(2. 53) 
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Now, because probability densities integrate to one, the following 

is an identity: 

Further,  f rom (2.40), (2.41), (2.42), and (2.43) it is clear that 

(2.55) 

Then, subtracting the constant (2.54) f rom (2.55), considering A t  small 

and u(t) constant over A t  

A t  + 0), and expanding the factor J in (2.54) and (2.55) appropriately in a 

Taylor's se r ies  leads to  

0 

almost everywhere (at least in the limit as 0 

0 

The following notation is used in this expression: 

(2.56) 

(2. 57) 

and 

a2 J - 
t ) = C  c ap aq ( zo*  to) 

a2 J 
-2(z0* 0 

pECx,y,vIsE CX,YYVI 0 a z  AZ 
ms 

EnC bo A q o I  z0, to] (2. 58) 

16 o(& ) denotes te rms  with the property lim o(At ) / A t  = 0. 0 At0+ 0 0 0  
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Let 

(2.59) 

0' This is the mean square matrix of Az 

+. It is now necessary to evaluate the various expectation 

(2.56). 

mean of Az m . Similarly, the expectation te rms  in (2.58)are the 

components of the mean square matrix of Az 

but easily verified using the standard techniques of random noise theory that 

For  this purpose it should be noted that (2.57) is merely the vector 
;B 

0' Azo 

It is a lengthy computation, 0' 

and 

1 
2 2 

('A, 4- l"Az 
0 0 

0 A t  -to(At) o(AtO) 
d A t o )  

2rrM2 O 
(2.61) 

Now substituting (2.60) and (2.61) backinto (2.56) and dividing 

by At leads to 0 

N O T  a 2 J  - (z , t ) t o(AtO)] . (2.62) 
b J  

-t U(tO)  T Y ( Z O ' t 0 )  -t 4 2 n ~  2 ay2 O O 

I( See, e.g. W. B, Davenport, Jr. and W. L. Root, Random Signals and Noise. 
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In the limit as A t  

this becomes 

+ 0 after applying the definition of the partial derivative 
0 

where 

(2 ,  64)  

as previously assumed in (1. 3 6 ) .  On the right hand side the limit 

operation and minimization operation are commutative because the 

minimum is understood to  be performed for each instant of time 

independently. 

It is convenient to t reat  (2 .  63 )  in  t e rms  of the time to go rather 

than time from t This is possible because the system is autonomous. 
0‘ 

Thus, let 

7 = tf-t 

and 

- 
T o  - tf - to. 

Then (2 ‘63)  becomes 

(2. 65)  

( 2 . 6 6 )  

(2.  67)  
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For  the one dimensional case an equation equivalent to (2. 67) 

may be similarly derived, and the result  is 

2.2. 1. 4 Observations 

It is worthwhile to  observe a few facts about (2. 67) and (2.68). 

Fir st, the rimilarity to the deterministic Hamilton- Jacobi equation should 

be noted. In fact, (2.67) and (2.68) formally reduce to (2.2) and (2. 3 )  as 

the disturbance term, d, and in turn the noise spectral  density, N rSee 

(2.6411are reduced to zero, 

0 -  

It is also worthwhile to note that (2.67) and (2.68) are equations 

in the initial phase (state and time). Thus, the derived control, u and 0 

resulting cost, J ( Z ~ , T ~ ) ,  represent the control to be used and the cost 

expected to be incurred starting from x and y a t  time t However, 0 0 0' 

the initial time may be considered variable, and then the results derived 

for 7 

reason the zero subscript will be dropped in the sequel, 

X 
may be applied for any state, (y), and time to go, T. For  this 

0 

Finally, i t  should be observed that (2.67) and (2.68) constitute 

both necessary and sufficient conditions for solution of the basic problems. 

Certain continuity proper ties and boundary conditions are applicable as 

discussed in the next section, but no basic assumptions a r e  required, 
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such as, for example, the assumption of the existence of an optimum 

contr 01. 3 i '  

2.2,2 Propert ies  of the Cost Surfaces and Switching - Curves 

Properties similar to those of Section 2. 1 . 2  may be stated for 

the stochastic attitude control and antenna steering problems. A s  before, 

the properties w-ill be stated for Problem 1-3, and the corresponding 

properties for Problem 1-4 may be deduced. 

The justification for most  of the properties in  the stochastic case 

follows that for the deterministic case almost directly once one basic 

fact  is understood. This fact is that almost all sample functions 

18 
(trajectories,  loosely speaking) of the .disturbed system are continuous. 

Thus, the stochastic system has essentially the same properties almost 

surely as the deterministic system. The cost equation, (2. 51), in the 

stochastic case involves a double integral, of course, but the expectation 

operator is alw-ays independent of the variables of differentiation that a r e  

of interest. The properties stated below, then, will be justified only 

w-here some additional essential factor need be noted. 

Property 2. 2-1. Initial Condition: Fo r  all values of the state variables, -- 
the initial cost is zero. 

18J. L. Doob, 9. a, chap. VI, sec. -- 3. 
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Property 2.2-2. Symmetry: 

is applicable in the stocha 

Property 2,2-3, Existence of Characteristic Curves and Trajectories% 
* 

There is a family of curves in phase space intrinsicqlly defined. by the 

r Hamilton- Jacobi type equation. These curves are the trajectories of 

the system in the limit as the random disturbance is reduced to zero. 

These curves will be called congeneric trajectories, The projections of 

the congeneric trajectories onto the expected cost surface will be called 

congeneric character is tic curves, 

The congeneric trajectories coincide with the trajectories of the 

corresponding deterministic problem. See Property 2, 1-3. These curves 

a r e  not related to the so called characteristic curves of the theory of 

19 partial differential equations. 

Property 2. 2-4. Continuity of the Cost Surface: Over the entire phase - 
space the cost surface is continuous. 

Property 2.2-5. Optimality of On-off-on Controls: The optimul control 

is of the on-off-on t n e ,  and (2. 13) holds. 

Note here  that the presence of the second derivative t e r m  in  (2.67) 

does not affect the result  in making the right hand side a minimum. 

Property 2.2-6, : In  every region of phase space 

for which the optimum control, uo(x, y, T), is continuous, all of the phase 

19 Sneddon, OJ. &, chap, 3, sec. 6 .  

- 
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derivatives of the optimum cost surface are continuous. 

Note: Analogs to Propert ies  2.2-7 through 2.2-9 will be stated a t  - 
this point, These propert ies  a r e  proposed on the basis that one expects 

the stochastic optimum cost surface to be smoother than the corresponding 

deterministic surface, because, intuitively speaking, any sharp  bends a t  
t 

switching points a r e  rounded off by the uncertainty of the disturbed 

trajectories. Mathematical techniques for treating the stochastic case 

are not as simple as those for deterministic problems, if they are even 

available, and the arguments used before have little advantage. 

Consequently, Properties 2,2-7 through 2 .2-9  will be assumed in the 

sequel without further justification. 

Property 2.2-7. Existence and Smoothness of Switching Surfaces: - The 

loci of switching points are assumed to form continuous surfaces. These 

surfaces a r e  called the switching surfaces,  and they are assumed smooth 

in the phase variables. - 
Property 2, 2-8 ,  Continuity of Derivatives of J: Over the entire phase 

space all of the first partial derivatives of the optimum cost surface with 

respect to the phase variables are assumed continuous. 

Property 2.2-9, 

switching surface between regions w-here u 

A necessary condition at a switching surface: A t  a 
s_. 

= 0 and u 
0 6 

= u are the 

optimum contr 01s 

(2. 69) 

There are no switches between u = -1  and u = t1 or  vice versa. 
0 - 0 
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Note: It is clear that Property 2. 1-10 is not valid in the stochastic case. - 
The closest available condition is one resulting from symmetry: namely, 

( O , O ,  7 )  = 0, o r  in one dime ( 0 , ~ )  = 0. This that - (0, 0, T )  = - aJ 
i j Y  ax ay 

supplementary condition is clearly also t rue in the deterministic cases. 

P Note: Propert ies  2.2-6 and 2. 2-8 together imply the continuity of the 
2 

t e rm - a in the Hamilton-Jacobi type equation. 2 
3 Y  

- 
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Chapter 3 

SOLUTIONS TO THE DETERMINISTIC HAMILTON- JACOB1 EQUATIONS 
1 

This chapter presents solutions to the deterministic Hamilton- 
I 

Jacobi problems as reformulated insec t ion  2. 1 f rom the basic problems 

of Chapter 1. The results here  are apparently the first to be derived 

directly f rom the Hamilton-Jacobi formulation and the first to describe 

the cost function over the entire phase space. Problem 1-4 will be 

treated first due to i ts  simplicity. 

3. 1. Previously known results 

Analytical methods for solving various facets of the deterministic 

problems have received considerable attention in the International Journal 

of Control (and i ts  predecessor the Journal of Electronics and Control) 

for the past several  years ,  

Fuller 

This attention s tems from the early work of 

This on relay control of single and double integrator systems. 

work t reats  performance cr i ter ia  of the form 

n 7 0  J n = min g x I n d t  - 
u c u  

subject to a saturation constraint, 

(3. 1) 

'A, T. Fuller,  "Relay Control Systems Optimized for Various Performance 
Criteria,  ' I  Proceedings F i r s t  International Congress IFAC, 1960, 01. I, 
5 10- 5 19. 
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The case n = 2 is of particular interest  here  because it corresponds to 

a limiting case of (1.6): the case when + a. For n = 2 Fuller showed 

that the optimum control is bang-bang; that the optimum cost for initial 

states with the property y = 0 is given by 0 
r 

- 23 5 /2 
J2 -30 alxo\  # ( 3 . 3 )  

where a . 9965; and that the switching curve is given by - 

where b 0.4446. These results hold as long as 

Y * 2 where k = . 05862 and t is the well known minimum settling time. f 

By 1963 this same limiting case had been approached in two 

distinct ways using the Bellman-Hamilton -Jacobi equation. 

showed that the results previously derived satisfied this equation. 

initial states not on the x axis the minimum cost surface is shown to be 

Fuller 

3 
For  

For  a minimum settling time discussion see M. 
Falb, Optimal Control, 

Athans and P, L. 2 

A. T. Fuller,  "Further Study of an Optimum Non-linear Control 
System, " Journal of Electronics and Control, XVII, 283-300. 

3 
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x 2 y +-xy 2 3 +-y 2 5  -+ a (x+&y 2 ) 5 / 2  3 15 

xz bYlY! 

5 / 2  ( 3 . 6 )  -x y t - x y  -5 y + a ( - x t & y  
2 2 3 2  5 

3 
-7 

X + Y  1 Y l  9 

I J =  

where a and b are as before and a is known more  precisely to be 

About the same time Wonham derived the same results directly from the 

partial differential equation using invariant scaling methods. 

in effect, reduced the number of independent variables of the problem. 

4 
He thus, 

Fuller subsequently rederived the results directly from the Hamilton- 

Jacobi equation using the pi-theorem of the theory of dimensions, and 

showed that Wonham's method was essentially the same, It should be 

noted that all of these later results are constrained by ( 3 .  5 ) .  The 

optimum solution is not presented for phases in time constrained 

situations where the origin of state space is reached either in the 

* -  * 
- f t f  interval 1, 3 6 L  > t t or is not reached at all. 

4W. M. Wonham, "Note on a Problem in Optimal Non-linear Control, I '  

Journal of Electronics and Control, XV, 5 9 - 6 2 .  

5A. T. Fuller, "Optimization of some Non-Linear Control SySkm8 by 
means of Bellman's Equation and Dimensional Analysis, 'I International 
Journal of Control, 111, 3 5 9 - 3 9 4 .  
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There appear to be no pub1 ed results of similar treatm f 

minimum fuel to target set problems. 

proximately the alternative limiting case of (1 -6) :  tho 

The true limiting case, of course, is trivial, for without a target se t  

constraint no fuel need be e 

These prob 

The above discuscjion relates to the double integral plant. The 

single integral plant is of little interest  in the steady state case (t large 

enough), because, as Fuller shows, the optimum feedback control merely 

f 

assumes its maximum magnitude and a sign opposite to that of the 

position e r ro r .  
6 Again, the time constrained regions of phase space a r e  

not considered. 

3 .  2 .  The one-dimensional deterministic equation 

The Hamilton-Jacobi type partial differential equation for the 

antenna steering problem, (2-7), is a linear, f i rs t  order partial dif- 

ferential equation. 
7 

Such equations are rather easily solved by the 

7 
method of characteristic (integral) curves. It is only the presence of 

the necessary condition, Property 2. 1-9, that causes the solution in  

this case to be non-trivial, 

3 .2 .  1 The Solution 

Comparing the initial condition (Property 2. 1-1) with the control 

I 

6 Fuller, "Relay Control Systems,,  . , 1 1  loc. cit. -- 
See, e. g. , I. N, Sneddon, Elements of Partial Differential Equations, 

7 

44-85 
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property (Property 2. 1-5) shows that the initial control (7 = 0)  is always 

zero, 

f rom Property 2. 1-8 i t  is clear that - is finite near 7 = 0 for finite y. 

Thus &!. near 7 = 0 cannot differ much from its value at 7 = 0, and the 

control u 

aJ 
AY 

This is because J(x, y, 0) 5 0 implies - (x, y, 0) = 0. Furthermore,  

aJ 
37 

w 
= 0 must be optimum in some ighborhood of 7 = 0. 

0 

For  the region where u = 0 is optimum (hereinafter called R ), 
0 0 

(2.7) becomes . 

2 
J = y ~ + c .  ( 3 . 9 )  

Since J = 0 when 7 = 0, c = 0. Now, 

(3.10) 

Then 

I y d = &  (3.11) 
when Property 2. 1-9 is satisfied. 

Because of symmetry, i t  is only necessary to consider the region y - > 0 

in the sequel. For y > 0 (3,  11) becomes - 

y 7 = b ,  (3.12) 

is bounded by this curve. R O  and this is necessarily a switching curve. 

I t  is of interest  to note that along the curve y = 0 ( 3 .  9)  gives J = 0. 

This is seen to agree with Property 2.1-9 .  Along y = 0, - aJ is also zero. 
2Y 
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This will he  of interest  in the stochastic cases.  

Along (3,  12), (3. 10) becomes 

- 1 ,  aJ 
hY 
- -  (3,  13) 

The switch at this curve must  be to a region where u = -1. For  such a 
c 0 

region (2-7) is 

The characteristic curves for (3. 14) are described by 

7 = y + c 1  

and 

(3. 14) 

(3 .  15) 

(3. 16) 1 3  
J = y + - y  + c Z .  3 

2 
J = Y  I- 

= $ y ;  (3 .  17) 

this is the boundary condition for R 

optimum control). Solving (3.  12) and (3 ,  15) simultaneously by eliminating 

(the region where u = -1 is the 
- 1  0 

7 yields 

(3. 18) 

To pick the proper sign in (3. 18), note that the line y = 7 intersects 

(3. 12) in such a way that c = 0. Then, since in R y > 0, the plus sign 

must be used. I 

1 -1 - 
Substituting this result  simultaneously into (3 .  16) and 
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(3,  17) leads to 

(3. 19) 

B y  resubstituting (3. 15) and (3. 16) back this means that in R - 1  

It is easy to verify that 

AJ (y, -) 1 = 1, 
hY 2Y 

and 

- ( (y , - )=y  aJ 1 2 
a7 2Y 

(3.21) 

(3.22) 

(3.23) 

This verifies the continuity of the derivatives across  the switching curve. 

Conversely, it can be verified that when - = 1, 

solution to (3.21). 

is the only 7 = - aJ 1 
AY 2Y 

Continuity of the cost surface at y7 = Q is also easily 

verified. 

Although it  may be mathematically verified that there exist no 

boundaries for a u 

intuitively evident f rom the physical problem. 

with no further justification. 

= t 1  region for y 7 0, this same result  should be - 0 

This fact will be assumed 

The solution for  the entire phase space is now available. 

Recalling the symmetry condition (Property 2. 1-2)$ the feedback control 

satisfies 
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1 +1 for y e - 27 

2 1 
u = 0 for  - z I y ( 2 7  
0 I 

1 
-1 for y >- 

27 

= dez 2y7 . (3.24) 

The minimum cost surface (as a function of initial condition) is 

1 f o r y e - -  27 

(3.25) 1 1 ( ~7 f;r - - < Y < -  

7'' for y > b 7 .  
5 27 - 

-(T+y) + k(7-l-y) -7 y - C(7-y) t 2 6 
The switching surfaces (here curves) are plotted in Figure 3-1. 

cost surface as seen from behind the 7 = 0 plane is sketched in Figure 3-2. 

The 

3.2.2 Remarks 

The following remarks are worthy of note: 

a. The boundary condition, Property 2.1-10, was not used 

to solve the problem; it was verified as an additional property of the 

solution satisfying the initial condition, Property 2. 1-1. 

fortuitous, because it is evident that no simple corresponding boundary 

This is 

condition is available for the stochastic case (see note following Property 

2.2-7). 

b. The solution of this section agrees  with the known solution 
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-4 

-2 

-3 

-5 

1 I 

Figure 3 -1 .  

Switching Curves in Phase Space for Problem 1-4 
(deterministic cas e). 
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I 

Figure 3-2.  

Cost Surface for Problem 1 - 4  (deterministic case). 

55b 



to the limiting case of Problem 1-4 for which no cost emphasis is placed 

on fuel. 

The corresponding cost must, of course, be divided by X in order to 

This limiting case corresponds to letting h grow indefinitely. 

t 

compensate for the artifice of an infinite weight on integral e r r o r  squared. 

Consider the switching curve, (3. 12), first. The results of 

Section, 3. 1 correspond to Problem 1-4 when in the latter n(t) EO, h-+ w ,  

and t + 0 3 .  

one dimensional equivalents of (1-ZO), (1-31), (1-32), and (1-33) to (3. 12) 

with M = I = 1. These equivalents a r e ,  respectively, 

To denormalize the results of the previous section, apply the 

y =  08  (3. 26) 

(3.27) 

and 

(3. 28) 

1 
E 1 x J = min P($) = min P ( F )  = min P I E .  

u s u  U S U  I M  U € U  
(3.29) 

This gives a s  the denormalized switching curve 

1 e t  = -  
2 1  

Taking the limit as X +  03 yields 

e t = o .  

The limit t + CD then leads to a switching curve described by 

(3. 30) 

(3. 31) 
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g = o .  (3. 32) 

This is the obvious result  referred to in Section 3. 1. 

pc The cost surface from Section 3.1 may be easily calculated for  t large enough: 
f 

cost = min f Lf h ( e ) e 2 ( t ) d t  
C O  u e u  

8 
=-I 93 

3 0 '  (3.33) 

The corresponding denormalization.of (3.25) to  check against (3.33) follows 

the denormalization process used for  (3.32), viz. : 

so that 

The characteristic function, (y), is defined as 
8 YO 

0 y = o  

1 y f O .  

(3.34) 
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1 3 2 1  2 312 
6 =- ( t+8)  - e t  -7;C(t-8) 3 

for t - 8 > 0 

for t - 8 < 0. (3.35) 

- 113 e3 
3 2  2 

- 113 t -t e+te 

c. The case where fuel receives the entire emphasis may also 

be verified. This is the case where X + 0. Although it may be mathemat- 

ically confirmed, the following physical argument leads to the optimum 

solution: if no emphasis is placed on position, the best use of fuel is to 

do nothing at all (switching curve at infinity), and the optimum cost for 

no expended fuel is zero. 

Now, consider the solution of the previous section. The 

switching curve may, again, be determined by denormalizing and 

taking I = M = 1, lirn , and lim . This leads first to (3.26). Then, 
X + O  t +co 

(3.36) 

for all t,but if tisfinite then 8 must  be infinite. Thus, regardless of t 
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the switching curve is 

and 

By similar substitutions 

2 
J = y 7  

312 82t = A  

lim J = 0, 
I +  0 

(3.37) 

(3. 38) 

(3,391 

the expected result. 

3. 3 The two dimensional deterministic equation 

The Hamilton-Jacobi type equation for  the attitude control 

problem, (2. Z ) ,  has properties very much like the one dimensional 

equation. The method of characteristic curves is again applicable. 

Strong parallels will be drawn to the one dimensional case. 

3.3. 1 The Solution 

Properties 2. 1-1 and 2. 1-5 [equation (2. 13)lindicate that the 

a3 - near '  7 = 0 cannot 

Therefore, 

initial control is always zero as before. The derivative 

differ much f r o m  zero  or  else Property 2. 1-10 would be violated. 

aY 

u = 0 is the optimum control for some neighborhood of the plane T =  0, 
0 

For the u region (2.2) becomes 
0 
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( 3 . 4 0 )  

and the characteristic curves for this equation'are 

y = C1' ( 3 . 4 1 )  

and 

q = = - - t c  X = - - + c  X 

2 y 2' 
1 C 

and 
3 

t c  J = - - - x  + c  = - - -  l x  1 1 3  
c 3  1 3 3 y 3' 

Since J = 0 when -7 = 0, ( 3 . 4 2 )  and ( 3 . 4 3 )  become 

These imply 

X 

C 2 0 =-  t c  
1 

1 1 3  

1 
3' o = - -  -x t c  

c 3  

Resubstituting ( 3 . 4 1 ) ,  (3.421, and (3.  43 )  yields 

( 3 . 4 2 )  

( 3 . 4 4 )  

1 2 3  
c3 = T C 1  c2 

1 3 2  2 2 
J = ~ 7 y  + T X Y + ~ X .  

( 3 . 4 3 )  

(3 .45 )  

( 3 . 4 6 )  

( 3 . 4 7 )  

This is the cost in the u = 0 region. 
0 

Now 

aJ  2 3 2 
- = - - 7  y t 7  x, 
a Y  3 

( 3 . 4 8 )  
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2 1 
3 

x = - - y 7  f- 
7 2‘ (3.49) 

This is necessarily a switching surface. 

The plus (minus) sign corresponds to a switch to a u = 1 (+1) control. Symmetry, 

Property 2. 1-7, again allows consideration only of a switch to u 

the switch to u = t 1  follows by symmetry. 

0 

= -1; 
0 

0 

It is interesting to note that the curve x = y = 0 is within the 

u 

agree with Property 2. 1-10. 

= 0 region, and that (3.47) gives the value J = 0. This is seen to 
0 

For  a region of u = -1 control, (2..2) is 
0 

The corresponding characteristic- curves are described by 

= cl’ 

and 

1 5 1  3 J = -  

2 5 2  3 2 
15 = -  y t 7 x y  t (x t l ) y  t c 3 .  

(3. 50) 

(3. 51) 

(3.52) 

(3.53) 

The boundary condition for these curves is the value of cost  

on the switching surface. Equating (3. 52) and (3.491, and (3. 53) and 

(3.47)’ and substi t~ting(3,  51) leads to 
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1 2  2 Y(Y+C1) + 1 . 2 

3 (Y+Cl  1 - z y  +%=--  
(3.54) 

and 

(3.55) 2 2 3 2  1 
3 1 5 1  3 2 =-(y+c ) y +(y+cl)  X Y + ( Y + C l ) X  1 

-1r - - c  y + (C2+1)Y+C3 
2 0 ’  3 2 

Equation (3. 54) may be rearranged to give 

4 3 2 
y + A y  + B y  + C y + D = O ,  (3. 56) 

where 

A = 6 c  1’ (3.57) 
2 

B = 9 c1 + 6 c  

C = 4 c 3 + 1 2 c  c 

2’ 

1 1 2’ 

and 

D = 6(c 2 c -1). 
1 2  

(3. 58) 

(3.59) 

(3. 60) 

To solve (3.49) for y, first apply F e r r a r i ’ s  method, giving the following 

resolvent cubic equation: 

3 2 
z t E z  + F z + G = O ,  

where 

E = -B = - ( 9 c l  2 + 6c2) ,  

4 2 
F = AC - 4 0  = 24cl + 4 8 ~  c t 24, 

1 2  

and 

2 2 
G = 4 B D - A D - C  

(3.61) 

(3.62) 

(3.63) 

(3.64) 

= - 1 6 ~  6 - 9 6 ~  4 c - 1 4 4 ~ ~ ’  
1 1 2  
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and where z is a number to be specified later. 9 

Now, following Tartaglia's method for  (3.61)* let  

= -3c 4 + 12 c 2 c - 12c2 2 t 24, 
1 

2 3  E F t -  E 
1 q = G - -  
3 27 

6 - 1 2 ~  4 c + 2 4 ~  c - 16c2+72c 3 2 - 96c2, 
2 2  

1 2  1 2  1 
= 2c1 

and 

1 3 1 2  
P +p R = -  

27 

4 
2 

= 96c; - 7 2 0 ~  c +2016 c4c2 - 2 4 9 6 ~  c + 1152 c 6 2 3  
1 2  1 2  1 2  

10 +1104c4-2688c 2 1 2  c +1536c2+ 2 512. 
1 

Then, the roots of (3.61) a r e  

where the W. a r e  the three roots of 
1 

3 
w = - & q + m ,  

or of 

3 
w =-Qq-m, 

i = 1,2,3,  

(3.65) 

(3. 66) 

.(3. 67) 

(3.68) 

(3.69) 

(3.70) 

9. 

10. 

See, e. g., W, L. Hart, Brief College Algebra, 174-175 

See, e. g. , Ibid, 173- 174. - 
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It should be clear that (3.69) and (3. 70) have at most one r ea l  root. 

CalI the root for (3.69) w and that for (3. 70) w'~.  

of the indicated quantities back into (3. 68) the following relationship can 

be derived 

4. 

Then, by substitution 

* 
2' z = w + w  - 3c2 - 2c 

1 
(3. 71) 

Solution of (3.69) for w in terms of c and c involves a lengthy 1 2 

algebraic excercize. It also requires careful analysis like than done for  

(3. 18) in order  to select  algebraic signs at certain points in the reduction. 

These manipulations have not been completed, and will have to be left 

for a future report. 

3.3.2 Remarks 

The following points may be noted in the results of the previous 

section. 

a, A s  for the one dimensional case, Property 2. 1-10 is not 

required to solve the Hamilton-Jacobi equation. 

solution that satisfies the initial condition. 

It is satisfied by the 

b. The solution of this section entails solving a quartic equation. 

If an equivalent three dimensional problem (i. e., a three integrator 

system with an integral e r r o r  squared cost term) werecto be .considered 

it would lead to a sixth order equation. 

Abel indicates that there is no hope of achieving an analytical solution 

The well known theorem of 

11 
to the Hamilton-Jacobi equation using the method of this chapter. 

See, e. g . ,  G. Birkhoff and S. MacLane, A Survey of Modern Algebra, 
Revised edition (1953), 452-455. 

1 1  
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Furthermore, increasing the order of the position e r r o r  t e r m  in the cost 

expression also increases the order of the algebraic equation that must be 

solved. For  example, substitution of x for  x in (1.35) leads to a problem 
4 2 

*s of solving an eigth order equation. This is clearly intractable. 

Thus, the methods of this chapter a r e  applicable to only a small 

class of problems, and even for  these problems the algebra involved in 

solution tends to become very complex. 

c. The solution of this section should agree with the known solution 

to the limiting case of Problem 1-3 for which no cost emphasis is placed 

on fuel ( h  + 0) ). 

equations (3.69) and (3.71) is completed. 

This cannot be displayed until the algebra associated with 

d. The solution of this section also should agree with the fuel 

only (h+O) case of Problem 1-3. 

uncompleted algebra. 

Verification here  also depends on the 
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Chapter 4 

ANALYTICAL SOLUTIONS O F  THE STOCHASTIC HAMILTON- JACOB1 
TYPE PROBLEMS 

4. 1 One- Dimensional Problem 
F 

In Chapter 2, the problem of the optimal control of a disturbed integrator 

w a s  reduced to the study of equation (2.68): 

(4.1) 'I a J  2 
- = min d a J  t u - t ~ u ~ t x  , c a x  a 7  W U . ,  a x 2  
a J  

or ,  after applying Property 2.2-8,of 

2 a J  
2 t x  , when l-gylsl ( u = O )  

a x  
(4.2) 

2 
(4.3) - a J  t 1 t x  , when aJ > 1  (u = -1) 

2 a x  ax 

t -  a J  t 1  t x ,  g = d -  a2 J 
a 7  ax2 ax a x  

when - < 1  (u = t 1 )  (4.4) 
2 

with the initial condition, J(x, 0)  = 0. (4.5) 

The investigation of the properties of the switching curves revealed 

that on the switching curve separating regions of u = 0 and u = t 1, (u = - l), - 
- -  a J  - - 1 ,  (-= a J  t 1 )  and - h'J is continuous everywhere. 
a x  a x  a x2 

The study of this equation can be simplified if certain additional 

assumptions a r e  made. First, it is clear that if J (x, T ) is a solution of the 

problem as stated, i. e. , satisfies (4. 1) and the initial condition, (4.-5) etc, then 

J2(x, T )  E J1(-x, T ) does also. 

symmetric solution also exists. 

1 

It follows that if a solution exists, then a 

On an intuitive basis, it is clear that the 

optimal cost is symmetric, so it  wi l l  in the future be restricted to such a 

form. 

condition 66 

Specifically, it  wil l  be assumed that J(x, T ) satisfies the symmetry 



J(x, T )  % J(-x, T ) (4.6) 

Note that if it could be established that the solution is unique, it would 

follow that the solution is symmetric in x. I 

By examining the equation for the cost in  the form 

it would appear as though J would increase in magnitude whenever x did, that is 

sgn(x) aJ> 0. (4.7) ax - 
This wil l  be a further requirement on the solution. 

requirement). 

(This may be a redundant 

a J  
a x  - is e v e r w h e r e  continuous. 

symmetric, 

Since the solutions under consideration are 

- a J  
a x  (0, 7) 

- - -  i tJ  
- p L  7) 

so that 

These assumptions lead to a study of the restricted problem 

I with initial condition 

, .  . 

J(x, 0)  = 0, 

and boundary condition 

a J  - (x, T )  = 0. lim 
x + ~ +  a x  

(4.10) 

(4. 11) 
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4. 1. 1 Steady-State Solutions 

A simple solution based on an assumed control law. If the system 

is to operate for a long t ime ( 7 ,  t ime to go, is large), a reasonable control 

law should not depend upon the t ime to go. 

a steady-state control law quite easily. 

This idea can be used to  obtain 

It is apparent that in this case the switching curve is in fact just a 

pair of symmetric pointa, i. e. , the optimal control law wi l l  be of the form 

d 

u = t l  i f x < - a  

u = o  i f  - a < x < a  (4.12) 

u = -1  i f x > a  

with a a positive constant.The problem of optimal control in the steady-state 

is then simply reduced to the determination of a single parameter,  a. 

To solve the problem in this form, reconsider the basic formulation 

of the problem. 

equation 

The system is described by the stochastic differential 

x = u  +v;( t )  (4. 13) 

The steady-state where w ( t )  is a Wiener process with Elw(t)w(s)]= d l t  - s  I . 
probability density then satisfies the steady- state Fokker- Planck equation 

d 

Noting the form for u( and 

d(UPs) 1 
- u-= 0. (4. 14) 

d2 P, 

dx2 dx 

its symmetry) leads to 

(4. 15) 

1 
H. J. Payne, The ResDonse of Nonlinear Svstems to Stochastic Excitation 
(unpublished Ph. D. Dissertation, California Institute of Technology, 196.l). 
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and 

= 0, a <x, d-- d2P - dPS 
dx dx 2 (4. 16) 

(4. 17) 

These equation a r e  to  be solved under the conditions 

continuous, (4. 18) P S  

continuous (continuity of probability flux), dpS 
dx u p s  d-- 

(4.19) 

and 

(4.20) 

Equations (4, 15) and (4. 16) a r e  easily solved, and, with the application of the 

conditions (4. 18) through (4.20) one finds 

and 

1 , O < x < a ,  1 t -  a 
d 

, a <  x. expL (a-x)/d] 
a .  

1 t -  d 

(4.21) 

(4.22) 

L 
J. D. Atkinson, Spectral Density of First Order Piecewise Linear 
Systems Excited by White Noise , (iinpublished Ph. D. Dissertation, 
California Institute of Technology, 1967). 
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The performance index, 

(4.23) 

P 

needs some modification f o r  the time independent situation. IH the steady- state, 

the integrand, e3 

(4.24) 
2 I4 + x ,  

wi l l  have an expected value which is some constant. 

expected value should be made a minimum. 

It is clear that this 

Having p (x), it is easy to 
S 

deter mine 

as  a function of the parameter a and then to minimize. The details a r e  as  

follows : 

m 
2 

K = 2 l CIuItx ] p (x)dx 
S 

0 
m 

2 2 a, a 
= 2 J p (x)dxt2 x pS(x)dx + 2 ,/ x Ps(x)dx 

0 a S 
a 

d3 L l t ( l t a / d f ]  t 2 . -  
a 2d 1 t- 
d 

a 1 
2d 1 + a  

d 
- 

(4.26) 

Introducing the parameter CI = 1 t a/d,  

(4.27) 

or  

. (4.28) 
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For an extremum 

So p* satisfies 
5 

2 2  3 2 d2 
3 3 '  
- d  p* = I + -  

and 

Then, 

Note that 

so that 

I + 3 p *  t 2  d2 3 PK(V*) = I t  - 3 

= d2 1s t l t p * ]  =d2[p*  3 t p *  3 , . 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

Since a is restricted to the interval 0 5 a < a, extrema may occur at the 

endpoints. First, note that 

so this point is ruled out as a minimum, When a= 0, p = 1, and 

K( l )  = 1 t 2d 2 

71 ' 

(4.36) 

(4.37) 



It is now necessary only to 

fact achieve the minimum 

show K ( l )  > K(p*) to conclude that p* does in 

Now, 

2 2 2  
K(p*) = d t d  p* 

so  it is only required to show that 

or 

or  

but 

(4.39) 2 .2 2 d p +  < l t d  , 

v* 2 <1 t - 1 

d2 ’ 

1 t - -  6 ’  d2 d4 d 

6 3 3 p < 1 t  - t  - 

9 
4 ’  

d2 4d 
t -  

6 3 

and, since 

1 
6 

d 
t -  3 9 

4 
4d4 d ,  

< -  _. 

for any d, the desired result  is attained. 

Another solution based on an assumed form fo r  minimum cost .  

Reconsidering the performance index, 
n- 

(4.40) 

(4.4 1) 

(4.42) 

(4.43) 

(4.44) 

it should be clear that for large T 

This observation provides a second method of determining the steady-state 

behavior. Notice that the asymptotic behavior of J, to the first approximation, 
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does not depend upon the initial state of the system. 

full detail, would of course depend upon the initial state. 

The value of 3 ,  in 

To reflect this 

"residual" effect of the initial state, a performance index of the form 

J = A T  t f (x )  (4.45) 

w 

is proposed in the steady-state. 

at this stage this is not required. 

One expects to identi 

Rather, it wil l  be deduced from the ensuing 

analysis. 

Inserting the assumed form,(4,45)for J(x, T )  into equation (4.9), a problem 

involving only ordinary differential equations is obtained; namely, 

X = d -  d2f - -  df t x  2 t m i n  ( 1 , -  E), x >O, (4.46) 
2 dx dx 

with the boundary condition 

(4.47) 

(The initial condition has, of course, been dropped. ). 

does not involve f(x) explicitly, introduce 

Since this problem 

A df 
g(x) = 

and obtain the problem 

(4.48) 

2 
A =  d *-g dx t x  t m i n ( l , g ) ,  x >  0 ,  (4,491 

g(0) = 0. (4. 50) 

Because of the initial condition, g < 1 for some region near x = 0. 

Solving for g in this region first yields 

(4. 51) 
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Then, 
3 

(4. 52) X 
gd = - 4- X x. 3 

This solution is  valid up to the point, say x = a, when g 1. Then 

3 a 
d =  - -  + Xa. 3 

Now solving for g in the next interval 

(4.53) 

over which g > 1 leads to  

X = d * -g tx  2 + 1 ,  
dx 

and 

g(a)  = 1 ,  

It is easy to determine a particular solution of this differential equation 

having the form 

2 gp(x) = a x  +f3x t y 

(4.54) 

(4. 55) 

(4. 56) 

Inserting this form, and equating coefficients of like powers of x, yields 

(4.57) 
2 gp(x) = x2 t 2 d x  + 1-1 + 2d . 

The general solution of the homogeneous equation is 

g(x) = k exp!k/d] (4. 58) 

The presence of such a t e r m  in the residual would seem to be unreasonable, 

particular€y in view of the l / d  factor in the exponential. Therefor e take 
3 

k = 0, s o  that the solution for g >1 is just g (x). P 

Condition (4.55) on gda)requires that 

2 2 
0 = a t 2ad-X t 2d (4. 59) 

2 
J In the limiting case, d ‘0, the optimal control law is obviously u = sgnx; 

it follows that X = 0 and g(x) = x2. 
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This equation, together with(4.53) serves  to determine both a and 1 : 

2 2 2 2  
X = d  [ (1t a /d )  t l ]  = d [p* t l]=K(y*).  4.61) 

These results are identical to those obtained previously. 

To complete the analysis, note that 

and 

2 1 3 3  2 2  f(x) = fl(x) = fo(a) t 7 (x -a )t d(x -a )t (1-h t 2d )(x-a), 

(4. 64) a < x. 

f (0)  = 0 is assumed. 

switching can occur in this interval. 

so there a r e  no more switching points. 

It can be verified that g(x) < 1 for 0 i x  < a ,  S O  no 

Finally, note that g(x) >1 for all x > a, 

4.1.2 Time-dependent problem 

Formulation as a "fr ee-boundary" problem. 

Now konsider q p i n  the full equations (4. 9) through (4. 11). Equation (4.9) i s  

clearly nonlinear. 

some interest. (4. 9)can be broken up into two equations: 

There is another way to  state the problem which is of 

(4.65) 

(4.66) 
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- 1 would describe a curve in the x-T a J  If the solution were at hand, -- a x  
plane. 

solved from the knowledge of the initial and boundary conditions. This 

type of problem in which a boundary curve must be found along with the 

Conversely,’ if .this curve were known, these two equations could be 

d 

4 
solutions is known as a llfree-boundary” problem . 

A traditional problem of this sor t  is that of determining the temperature 

in a one-dimensional material  which is part  liquid, part solid--a melting o r  

freezing problem. The free boundary in this case is the interface between 

liquid and solid . Unfortunately, an  examination of the methods employed 

to solve melting problems reveals that they a r e  inadequate for treating 

5 

the problem above. 

A Nonlinear integral equation. Equation (4.9) can be rewritten as 

+a ) ~ = x  LJ; ( 2 - d -  a2 
2 a x  ax 

x >o (4.67) 

Suppose one can find a function G(x,  ~ k )  which has the properties 

LG = 0, x >  0, T >O, 

l im aG ( 4 ,  T Ix ) = 0, (4.68) 
X‘Ot ax 

and 
W 

lim G( 5, T 1x1 f(5) d5 = f(x) for any x > 0. (4. 69) 
T - ‘ o  0 

A. Friedman, Partial Differential Equations of Parabolic Type, Chapter 8. 4 

Ibid. 
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Then J(x,  T ) can be represented as 

To verify this, first note that 

(4.71) 

since LG = 0. Then, because of (4.6g)this reduces to 

2 aJ 
LJ(x, T ) = x t min ( 1, - (x, T )) , x > 0, (4.72) a x  

which is just (4.67),Clearly,(4.70)implies that J(x, 0) E 0, and 

l im 

which meets all conditions required of J(x, T). 

a J  
x40+ a x  - (x, T 1 = 0 because of (4.68) Then (4.70) provides a representation 

This is a nonlinear integral 

equation for J. 

6 Fortunately, the function G(x, T I 4 ) is available. Caughey and Dienes 

studied the following one-dimensional stochastic differential equation: 

i = -sgnx t w  (t), (4.73) 

with w( t )  the Wiener process having the property ECw(t) w(s)1  = dl t - s  1. 
Fokker-Planck equation associated with (4.73) is 

The 

9 

-- b T t d - J  aLT 
at a 4  a 52 
a T  - t s g n  e (4.74) 

T. K. Caughey and J. K. Dienes, “Analysis of a Non-linear First Order 6 

System with a White Noise Input”, Journal of Applied Physics, XXXII, 
2476- 2479. 
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and the backward equation i s  

(4.75) 

B 

Caughey and Dienes found a function, T ,  which satisfies both of these 

equations : 

where 

I XI  I 5 I -t w =  
2 (dt )l 

(4.77) 

(Actually, in their paper only the solution valid for x > 0 is given; the expression 

above is  the valid expression for any x). This function is not quite G(x, T 15). 

It satisfies(4.67)and(4.69) as is evident from the reference cited but does not 

satisfy (4.68)Consider G(5, T I x) = T(S, T I x ) t T ( - ~ T  1 x). (4.78) 
A 

Clearly LG t 0, and 

lim G(  5, T I x )  = 6(x- e )  t 6(xt q )  . 
T-*o 

How ever, 

l im f G ( S ,  T I x ) f (c )  dT= f(x) for any x > 0 , 
T-'o 0 

i. e. , G satisfies (4.69). 

(4.79) 

(4. 80) 
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Now it is evident that T has the property that 

x 

It follows that 

and in particular 

(4.82) 

(4.83) 

(4. 84) 

so G satisfies (4.68) 

Using(4.78) the represenatation for J by means of the function 

T( 5,  T I  x ) becomes 

(4.85) 

Some simplification is possible. Note that 

(4.86) 
0 r w  

Then, 

(4.87) . 1 .  
. I I  
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A slightly simpler looking equation is obtained by differentiating with 

respect to  x and introducing 

(4.88) r 

where 

Evaluation of an integral: 

T(x, T ) does not involve J(x, T ) and so can be evaluated separately, 

Because of the complex nature of T, a somewhat indirect method wi l l  be 

employed. 

First, note that 

(4.91) 

The quantity 

w 
2 n  - T ( 5 , s I x )  d4 = m(x,s) (4. 92) 

- w  

has the interpretation as the mean- squar e displacement given the initial 

state x, s units of t ime ear l ier ,  for the problem considered by Caughey and 

7 Dienes. Since m(x, s ) also satisfies the backward equation: 

Payne, op. cit. 7 
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(4.93) 

The initial condition is easily obtained: 

03 
2 .  

(4.94) 
2 l im m(x, s )  = lim 1 T(  5, s i x )  dF = x . 

s+o s + o  - w  

Equation (4.93) may be solved by means of a Laplace transform. Let 

Then, 

00 - 
m(x,  X )  J e - l tm(x ,  t)dt. 

0 

- 2  am t d  7~. a 2_m Xm -x = -sgnx - 
a x  

a x  

It is easily verified that 

(4. 95) 

( 1 t d X )  - x - -2ixI t - - 1 2  2 m = 
P X  x X3 

(4.96) 

(4. 97) 

is a particular solution. Then i?T can be represented a s  

(4.98) 
- -  m = m t m  P 0 '  

where KO satisfies 

2' X r n  =-sgllx t d  ' 
0 a x  a x  

(4.99) 
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The general solution of this equation is 

where 

(4. 100) 

c 

(4. 101) 
1 0.. = -  

1 , 2  2d - 

(The symmetry of ETo has been used to identify coefficients from the . 

region x .e 0 with those for x > 0. ) To determine the coefficients A and B two 

conditions a r e  applied: 

(4.102) - 8 
(1) m (x, A )  is analytic for all sufficiently large X . 

(4. 103) 

(This derives from properties of T(x, T I F ). ) The first of these 

conditions requires taking B = 0. 

From the second of these conditions 

-2 A =  
X2(VG7i4' -112) 

, 

so  the total solution is 

(4. 104) 

(4. 105) 

ct 
This follows by assuming m(x, t )  = O(e 
m (x, X ) is then analytic for  any X such that Re (A) > C. 

) for some constant C as t 4 a. 
8 
- 
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One can verify that the initial condition, 

l im 
X - r a  t d O  

X m(x, X ) = l im m(x, t )  = x 2 , 

- is satisfied. 

(4. 106) 

Referring to equation (4.91), 
b 

Finally, one can obtain 

m - X t  - r (x, x j e r(%, t)dt, 

0 

by noting that the time integration corresponds 

(4: 107) 

r (4. 108) 

to  division by 1: 

(4. 109) 

The inversion of this expression can be accomplished by means of 

the formula 

n th erfc is the n where i integral of the complementary e r r o r  function. 9' lo '(The 

left side is the Laplace transform in  the variable X of the expression on the right. ) 

9 M. Abramovitz and I. A. Stegin, Handbook of Mathematical Functions, 1026, 
formula (293.86). 

' lo Ibid, 299. - 
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Not'ing that 

implies that 

it is evident that i f  

then 

(h-l/4d)-I  

the denominator of (4.114) can be expanded as follows 

(4. 11 1) 

e 

(4.112) 
* 

(4. 113) 

(4. 114) 

(4. 1151 

Then, 

2 1 
r ( X , t )  = 2xt-t sgnx t 2 sgnx exp[Z;i-IxI - 2 1  4d - 

Q, ( k t l )  ( k t 2 )  

k=O 2 .c  

2 2 1 
= 2xt - t  sgnx t 16 t sgnx  exp[2;r(x( 4d 

(4. 116) 
2 k t 4  ( $ - y ( k t  l ) ( k t 2 )  i 

k=O 

This expression can be checked for x = 0. For this purpose note that ( 
1 

erfc(0) = 
2 k t 4  ; i  

.n 1 
1 erfc(0) = 

2 ~ ( :  t 1) qkt2r  ( k t 3 )  

-k-2 11 
4 

( k t 2 ) !  
- - (4. 117) 

Ibid, p. 300. - 
84 



Then 

I 

(4. 118) 

To simplify the expression somewhat, introduce the normalized integr 

e r ro r  function: 

n 1 n 
i erfc(x) i erfc(x) 

2n r  (T ti) 

Then, 
i n erfc(0) = 1, 

and for all x > 0, 1 .n erfc(x) < 1. l2 Then, 

(4. 119) 

(4.120) 

(4.121) 

For  purposes of numerical computation, it is useful to introduce the 

variables 

q = x/d 

0 = t / d  

Then 

CY- -“I 2 2 
4 2q8 - 8 sgn (q) t 8 sgn(q) exp r ( X J t )  = 

d2 

The appealing aspect of this expression is that the right hand side is 

12 
Ibid J P* 300. 
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independent of d, s-o that numerical computations need only be made for 

pairs of variables (q , 9) rather than for sets of three variables (x, t, d) as 

suggested by (4. 121). 
- 

Discussion of the integral equation. The complexity of the integral 

equation (4.89) would seem to preclude the possibility of determining an 

exact analytical solution. In principle, one possible means of obtaining a 

solution is a s  follows. Set 

p 0 ( x , ~  1 = r(x, 7) 

and then successively calculate 

(4. 123) 

(4. 124) 

Due to the nonlinear character of this formula, it is not even evident that such 

a scheme would converge. 

At this point some basic questions remain. Does the integral equation 

have a solution? If so,  is it unique? Does the iterative scheme suggested 

above converge to the solution? 

on the integral equation, say, for the noise parameter,  d, very small  o r  

very large? 

Are there any useful approximations based 
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4.2 Two-Dimensional Problem 

Unfortunately, very little of the analysis which could be carr ied out 

for the one-dimensional problem can be extended to the two-dimensional 
* 

problem. Recall that the Hamilton- Jacobi formulation resulted in the 

requirement that the performance index, J, satisfy 

(2.3 1) 

This problem has symmetry properties but these a r e  not as  simple 

as  for  the one-dimensional problem. 

there  remains 

If the indicated minimization is performed, 

(4. 125) 

From this it is clear that 

The direct method employed to  study the steady-state of the one- 

dimensional problem is not applicable to the two-dimensional problem because 

the form of the control law is no longer obvious. 

rather than a switching point. 

employed previously, namely assuimg a steady-state solution of the form 

It entails a switching curve 

However, again considering the second method 

J = X 7 -I- f (xJy) .  (4. 127) 

leads to  f(xJ y)  satisfying 
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(4. 128) 

There are two significant differences between this formulation of 

the steady-state problem and that for the one-dimensional problem. F i r s t ,  - 

(4. 128)is still a partial  differential equation kf. eqn. (4.46)l Second, no 

boundary conditions a r e  presented here.  

solution of (4.128)is the determination of proper boundary conditions. 

The first step to a successful 

The study of the time-dependent problem is plagued by even more  

difficulties. There is no apparently convenient way to  formulate this problem 

as a nonlinear integral equation. This difficulty derives from 1) the lack of 

a useful reformulation of the problem by making use of symmetry and other 

intuitive properties of J (cf. eqns. (4. 9) through (4. l l) ,  and 2) the lack of a 

two - dim ens ional ''bang -bang" solution cor r es ponding to (4. 76). 

It appears that any practical attempt to solve these problems has to  

be a numerical approach. 
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Chapter 5 

NUMERICAL SOLUTIONS OF THE STOCHASTIC 

HAMILTON- JACOB1 TYPE PROBLEMS 

This chapter presents numerical analyses and ults for  the two 

Hamilton- Jacobi type partial  differential equations derived in  Section 2-: 2. 

approach of this chapter is to use the simplest numerical techniques that 

a r e  consistent with reasonably accurate results--even a t  the expense of 

The 

computation time, if necessary. 

computer operations, discussion of these operations will  be minimized 

in favor of problem related matters.  

be presented, however, because they a r e  quite simple and pinpoint the 

methods used. 

While the techniques -applied involve digital 

The actual computer programs will 

5.1 The One-Dimensional Problem 

5. 1. 1 Numerical Formulation 

The one-dimensional Hahilton- Jacobi type equation for  the antenna steering 

problem i s ,  as  was mentioned before, a parabolic partial differential 

equation. Typically such equations require boundary conditions of the form 

The condition(5.3)is clearly available here;  it is, by Property 2.2- 1, 
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Conditions corresponding to(5.l)and(5.2)are not so readily available. 

only relevent property is the symmetry condition, Property 2.2-2. 

The 

It 

w a s  remarked in Section 3.2.2 that a condition corresponding to Property 2.1- 

is not available for the stochastic problem, because the expected cost for 

.. 

initially zero position e r r o r s  is not known without somehow solving the 

basic problem 

of the state variable, y, is unrestricted. 

the f i r s t  place. It is also true that the range of definition 

The net result  is that the only 

reasonable boundaries corresponding to( 5.l)and(5.2)are what might he called 

the natural boundaries consistent with syrnrnetry and(5.3). This is, then, 

a pure initial value problem. 

To reduce (2. 68) to a numerical relationship, a rectangular grid is 

placed over a region, R, of phase space that includes par t  of the line 

T = 0 and the state domain of interest, say, 0s yC b. (The negative region 

will  follow by summetry. ) The grid spacing in the y direction is A , and 

that in the T direction is 6. At a mesh point, yi, T ~ ,  

(5.5) 
A J(yi, T ~ )  = J ( i A ,  n 6) = J. 

1, n' 

If i 

then A is  defined such that 

-2  i s  the number of interval grid points i n  a single row of y in R, 
max 

-1) A = b. (5.6) max (i 

A bound on 6 will  be dictated by convergence properties of the numerical 

procedure and by the time domain of interest. 
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The simplest convergent finite difference representation for (2.68) 

uses a central difference formula-for J and J and a forward difference 
Y YY 

for JT. 1 Thus, let 

J i , n t l  - J. i , n  

J T  = 6 8 

-J 
i t 1 , n  i - l , n  J 

. #  28 J w  
Y 

(5.8) 

and 

J i t l , n -2J i , n  t J  i-1,n 
J m  w A 2  

(5.9) 

Substituting in (2 68) and rearranging te rms  leads to 

= (c - u a) J . t (1-2c) J. 
o i - l , n  1, n 

. J i , n t l  

where 

6d c =  - 
A 2  ' 

(5.10) 

(5.11) 

(5.12) 

and u is the optimum control selected in accordance with Property 2.2-9, 

Actually all that wil l  be required f o r  u by way of assumptions is to make 

some reasonable assumptions about its regions of constant state. 

It can be shown thaq5.lo)is a useful approximation to (2, 68) as long as 

0 

0 

1 

'The usual subscript notation wi l l  be used here to represent partial differen- 
tiation. Context should prevent confusion with the grid notation. 
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That this result  is also valid for piecewise constant u is assumed. 

has e r r o r s  of o(A ) for constant u . It wi l l  be assumed that equivalent * 

1 e r r o r s  apply for  the present problem. For  the particular case in which c = - 2- 

Formula (5 
0 

2 
,o 

(5.lQ)reduces to a form similar to the familiar Schmidt formula of heat 

transfer: 

= ( ~ - u a ) J  1 -I- ( z 1 4- uoa) Ji+l,n i , n t l  o i - l , n  J 

3 
2 2  

t S [  (i-1) A t I u  I ] .  (5.13) 
0 

The boundary and initial conditions become 

J = 0, i, 1 
(5. 14) 

- n =  1,2,  ...¶ n (5. 15) 
0, n - J2,n3 max' 

J 

and 

= 3(Ji -1 ,n  -J  i -2, n ) t J i  - 3 , n ,  n J. 
1. 
max' max max max 

(5. 16) 

n =  1,2, ..., n max' 
Equation (5, 14) is just a numerical transliteration of (5.4). Equation (5. 15) is 

an application of the symmetry property. Equation (5. 16) results f rom a proces 

of naturally extrapolating the cost surface at each time, 7, using Newton's 

See, eg., G. Forsythe and W, R. Wasow, Finite Difference Methods 
for Par t ia l  Differential Equations, sec. 14. 

H. B. Keller, "The numerical solution of parabolic partial  differential equatio 
3 

ed. A. Ralston and H. S. Wil l ,  Mathematical Methods for Digital Computers, 
135- 143. 
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4 
backward interpolation formula over three points. 

The manner of solving(5. lO)and(5.14)through(5.16)for J. a t  the mesh 
1, n 

points is quite straight forward. The initial and boundary conditions determine 

the values of J. at all the boundary points. Since J (y, 0) = 0, u = 0 

along the initial boundary (T = 0). 

to determine J fo r  all interior points, i, and successive values of n a s  

1, n Y 0 

Then formula(5. 1O)with u = 0 may be used 
r” 0 

i, n 

long as n is small. Fo r  each n a s  soon a s  the interior points a r e  treated, the 

boundary conditions,(5.15)and(5. 16),may be used for the end points. 

values of cost a r e  obtained fo r  an entire column (constant n), the magnitude 

of the first central difference derivative, 

Once 

-J i t 1 , n  i -1 ,n  J 

2A J w  
Y 

(5. 17) 

may be compared to unity (corresponding to Property 2.2-8). 

results of Chapters 3 and 4 it i s  to be expected that the location of this derivative 

condition wi l l  s t a r t  at a maximum y and gradually decrease with n. 

F rom the 

Once the 

derivative reaches unity, points above the unity derivative point a r e  computed 

using(5. 1O)With uo = -1 and those below usingj5. l0)with u 

where the derivative is unity is the switching curve. 

= 0. The location 

No  region of u = t1  

0 

control i s  expected in the region, R, selected, that is , for  y 2 0. 

5. 1.2 Computational Algorithm and Results 

The For t ran  coded computer program realizing the above algorithm 

is shown in Figure 5- 1. It should be noted that the particular derivative 

See, eg. , L. Lapidus, Digital Computation for Chemical Engineers, 21-23. 4 
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. - - - ___ - - - - ____ 
C NUfiERICAL INTEG-RAT-ION OF IVOISEY ONE DIkENSIONAL HANILPUN - JACOB1 
C TYPE EQUATION 

DIPIENSION F (  101)  
IDAY = 22  
PI0 = 11 
I Y R  = 1 9 6 7  
D = 3. 

N 1  = 1000 
IPCiNCH = 2 - 

C NO = 1 YES = 2 .  
TDEL = 2. * D t L  
C = DELT * D / DEL**Z 
E = 1. - 2. * C 
R = DELT / 2. / DEL 
G = C + R  
P = C - R  
GO TO (lr2), IPUNCH 

WRITE (7 ,161  U, DEL, DELT 

00 14 I = 1, 101 
14 F ( 1 )  = 0. 

N = l  

2 PAUSE 1 

1 WRITE ( 6 7 8 )  IUAY, MO, IYR,  D, DEL, DELT, (I, I = 1, 101, 10 )  

I 1  = 100 
17 A = F ( 2 )  

B = F ( 1 )  
DO 3 I = 1, I1 
F I M l  I - 1 
F ( 1 )  = ( A  + F C I + l ) )  * C + B * E + DELT * ( F I i v l l  * D E L ) * * 2  
A = B  
B = F ( I  +. 1)  
I F  ( I  - 100)  3 ,  6, 6 

3 CONTINU€- 
I l P l  = I3 + 1 

F I M l  = I - 1 
l-11) = A * G + B * t + F ( I + 1 )  * P + OELT * ( F I i Y 1  * DEL) * *2  -!- DELT 

DO 4 I = I l P 1 ,  100 

5 I F  ( F ( I 1  + 1) - F ( I 1  - 1 )  - TDEL) 9 9  1 0 9  10 
1u 11 = 1 1  - 

GO TO 5 
Y lt 1 1 1  - ) 1 2 ,  159 12 4 -  

1 2  F I  = I 1  - 1 
Y = l-I * UEL 
FN = N 
T = ( F N  - 1,) * DELT 
WRITE ( 6 9 7 )  TI ( F ( I ) ,  I = 1, 101, 1011 Y 
GO TO (13 ,181 ,  IPUNCH 

1 8  WRITE (7716)  T, Y 
13 N = N + 1 

1 1  FN = N 
I F ' ( N - -  N1) 17, 17, 11 

T = ( F N  - 1,) * DELT 
WRITE ( 6 ~ 7 )  T, ( F ( 1 ) r  I = 1, 101, 1 0 ) ~  Y 
GO TO ( 1 9 , 2 0 ) ,  IPUNCM 

20  WRITE (7 ,161  T, Y 
19 CALL E X I T  

8 FORlvlAT ( 1 H 1  1 9 X  79HNUMERICAL INTEGRATION OF NOISEY ONE DIMENSIONAL 
1 HAMILTON - J A C O B 1  TYPE EQUATION / 20X 11HW- H. SPUGK 46X Z Z H I N I T I  
2ATED 1 8  AUG. 1967 / 78X 9HRUN DATE 1 2 ~  159 I 5  / / /  3 4 X  3HD = E9.2, 
35X 5HDEL = E9.2, 5X 6HDELT = E9.2 / / /  4 X  3H T 3 X  1 1 / 2 X  2HF( 13, 1H 
4 )  1x1, 2 X  7HSW. PT. / I  

16 FORNAT (8E9.21 
'END 

Figure 5-  1. Fortran Coded Program for Stochastic Problem 1-4. 
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comparison scheme corresponding to (5. 14) coded in Figure 5-1 results in 

a value for the switching curve that i s  slightly below the actual curve. 

In fact, the actual curve (within the validity of the numerical approximation) 

will fall somewhere between the indicated point and A units above this point. 

Table 5-1 is a summary listing of the switching points produced by the 

computational algorithm. 

results for  various yalues of the noise coefficient, d. 

Figure 5-2 shows a plot of this data. Both give 

It is interesting to note that for small times to go (small T) the switching 

curves closely approximate the switching curve for the noiseless case. 

the opposite extreme, for la rge  times to go the switching point is very near 

the steady state value obtained analytically in Chapter 4. 

results a r e  compared in Figure 5-3 for various d. 

At 

The steady state 

The results presented here  must be considered preliminary in that the 

numerical conditions under which they were completed a r e  not thoroughly 

understood. Thus, for  instance, the effects of the choice of grid size a r e  

not known nor a r e  the effects of the extrapolated upper boundary condition. 

5.2 The Two-Dimensional Problem 

Results for the numerical solution of the two-dimensional Hamilton- 

Jacobi type equation, (2.31), have not been obtained as  of the date of this 

report. The following formulation of a numerical algorithm is a direct  

extension of that used for the one-dimensional problem and should yield 

equivalent results i f  the computation times do not become excessive. 

5. 2. 1 Numerical Formulation 

The two-dimensional equation for the altitude control problem, (2. 67), 

95 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

. O O l  

0. 18 

0.15 

0. 13 

0. 12 

0.11 

0.11 

0.11 

0.11 

. 0 1  

0.48 

0. 28 

0.24 

0.22 

0.22 

0.22 

0.22 

0.22 

0.22 

0.22 

. 1  

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

. 3  

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

* 
See equation (2.65) 

** 
See equation (2.64) 

1. 

0.60 

0.40 

0.40 

0.40 

0.20 

0.20 

0.20 

0.20 

0 . 2 0  

0.20 

3. 

0.60 

0.40 

0.20 

0.20 

0.20 

0.20 

0.20 

0.20 

0.20 

0.20 

Table 5-1. Location of Switching Points for Stochastic Problem 1-4. 
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. 2  . 3  . L )  . s  .I; . 7  . %  . 9  .lo 5 . 1  

TflU 

Figure 5-2. Switching Curves for Stochastic Problem 1-4 (for various 
values of d) .  
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LOG D 

Note: B From figure 5-2 
- ~ l o m  formula (4.33) 

Figure 5-3. Steady State Switching Points for Stochastic Problem 1-4. 
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is a parabolic partial differential 

Typically these eqGtions require 

equation as is the one-dimensional equation. 

boundary conditions of the form 

J(x, yz, 7) = J (x, T), x x - C x 28 Y = Yz, 0 f 7; (5.21) 
4 1- 

and 

Condition (5.22) is clearly available by Property 2.2- 1: 
,. . . 

( 5 . 2 3 )  

The other conditions a r e  not readily available. This will again lead to the 

assumption of boundary conditions. A degree of symmetry is 

also applicable to the two-dimensional problem, and this allows the x 

through (5.23) to be selected as zero; that is, only half the state plane need be 

considered. 

of (5.21) 1 

The cost at negative x values is then the corresponding value at 

the point image through the origin. 

Equation (2.67) is now reduced to a numerical relationship by placing 

a rectangular grid in a region, R, of phase space. 

the surfaces T =  0 and x = 0, and extends in  other directions to  cover the regions 

This region is bounded by 

of interest. 

A 

(72 0 and x > 0, of course. ) The grid spacing in the x direction is 

X' Y' i yic' 'n* 

- 
in the y direction A and in the 7 direction 6 .  A t  a mesh point, x., 
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a 
J(xi, yk, T ~ )  = J ( i A  ,kA -b2,n8) = J. 1, k, n' 

X Y  
(5.24) 

If i -2  and k max max -2 are thenumber of internal grid points in  a single row 

of X and y, respectively, in  R, then A x  and A a r e  defined such that 
Y 

-1) a = bl ,  
(imax X 

and 

(5.25) 

(k -1) Ay = 2b2. (5.26) 
max 

A bound on 6 w i l l  be determined in  the sequel 

The simplest convergent finite difference representation for (2. 67) uses  

a central  difference formula for J 

J , 

J and Jx and a forward difference for w' Y' 
(See (5.7) through (5.9)Thus leads to the recursion relationship 

7 

= (c-u a)  J t ( 1 - 2 ~ )  J Ji, k,n t 1 o i, k - l , n  i, k, n 

' (' ' uoa) Ji, k t l ,  n ' e(k- (Ji+l, k, n- Ji- 1, k, n )  

(5.27) 

where 
- .  

6d 

A 2  ' 
Y 

c =  - (5.28) 

100 



6A 
Y 
2A (5.30) e =  

X 

and u is the optimum control as before, It can be shown that ( 5 -  27) is 

a useful approximation to (2'67) fo r  constant u as long a s  

* 0 

0 

5 
(5.31) 1 

I-. 2 

The validity of this result in the present case is assumed. It wi l l  be assumed 

that(5.27Fas e r r o r s  of o(A ) t o(A ). 

2 2 
o(A ) t b ( A  ) , but the assumption is sufficient. 

Y X 

(The e r r o r s  probably are of 
Y X 

The particular case in which 

the coefficient of J vanishes is unstable by (5.31). 
i, k, n 

The boundary and initial conditions here  a r e  

= 0, i =  1,2, ..., i k = 1,2,  ..., k (5.32) Ji, k, 1 max' max; 

J = J  k =  1 , 2  ,..., k ,n=1,2  ,... (5.33) 
O,k,n 2,k t l - k , n  max rnax 

) + J  i -1 ,k ,n  i -2,k,n - 3., k, n' -J J i , ki = 3(Ji 
rnax max max rnax 

k = 2 , 3 , . .  . , k  rnax - 1 , n = l , 2  ,...; (5.34) 

- 
J. Ji, 4, n' (5.35) - 3(Ji, 2,n i ,3 ,  n 

- J. 
1 , l , n  

i =  2,3,. .., i -1, n =  1 ,2  ,.,..; max 

c 
2 See, eg., G. D. Smith, Numerical Solution of Partial Differential Equations, 
41-42. 
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J i , k  , n  = 3(Ji,k - l ,n -J i ,k  -2,n I J  i , k  -3,n' 
rnax rnax max max 

i = 2 , 3  ,..., k - 1 , n = l , 2 , . . . ;  (5,. 34 
rnax 

3 1 
2 [3(J1, 2, neJ1, 3, n I ' J1,  4, n 

= -  
1,1, n 

J 

1 z 3(J2, 1, n-J3, 1, n ' J4, 1 ,n  1, 

n =  1,2, ..., (5.3' 

I t  J l , k  -3 ,n] ,  = z  C3(Jl,k -1,n 1 ,k -2,n 1,k rn max 
-J 

1 
J 

max max max 

3 n max' 
' z 3(J2, k n -J 3, k max, n I t  J4,k 

1 

max' 

n =  1,2,  ... ; ( 5 .  31 

-J -t Ji - 3 , l , n  1 = - C 3 ( J i  - ~ , l , n  i -2,1,n Ji . 1,n 2 
1 

max max max max' 

t 

n =  1,2,  ... ; (5.3' 

and 
1 

-2, k 4 = z 3(J - Ji i - 1, k n max max' max max' k , n  max' max Ji 

-3,k ,a] t Ji 
rnax max 
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1 
1, t 2 c3( J. , k  -1 ,n - J. 1 , k  -2,n) t J i  

1 rnax rnax rnax max ,k -3 ,n  rnax rnax 

n =  1,2, ... (5 .40)  

Equation (5 .32)  is just the numerical equivalent of (5.23). Equation (5 ,33)  

represents the symmetry property. 

extrapolations based on Newton's forward or backward interpolation formulae. 

Finally, (5 .37)  through (5.40) a r e  averages of Newton's formula extrapolations 

Equations (5 .34)  through (5 .36)  a r e  

in the x and y directions at the corners. 

The manner of solving these numerical relations for J. a t  the 
1, k, n 

mesh points closely parallels the one-dimensional method. The initial and 

boundary conditions determine the values of J. at  all boundary points. 
1, k, n 

Since J (x, y, 0) = 0, u = 0 on the initial boundary (T=O). 

(5 .27)  with u = 0 may be used to determine J 

of successive columns, k, and for successive but small values of n. The 

Then formula Y 0 

for all interior points, i, 
0 i, k, n 

values of J. 

J. 

conditions (5 .34)  through (5.40) may be applied once all of the interior points 

fo r  column k-1 must be*preserved for  use when computing 
1, k, n 

because of the particular form of (5.27). For each n the boundary 
1, k, n t  1 

have been treated. When the cost over the entire region, R, at time n6has 

been calculated, the value of the first central difference 

-J i , k t l ,  n i , k - l , n  J 

24 J m  
Y Y 

may be compared to plus and minus one for each interior point of R. 

(5.41) 

The results of Chapter 3 suggest that this partial derivative will  pass through 
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each of t 1  and -1 at only one point per column (per k). 

these two points form two switching curves by Property 2.2-9. 

The locations of 
" -  

Above the 

J = t 1  curve (i. e. ,  for larger  algebraic values of Y) the cost should be 
Y 

computed using (5.27) with u -1. Below the J = - 1 line (i. e., smaller algebraic 
0 Y 

y), (5.27) should be used with u = t1. In between, of course, u = 0 should 
0 0 

be used. 

the u 

In each case the calculation procedure should be as  described for 

= 0 case for small n. 
0 

5.2. 2 Computational Algorithm and Results 

As noted previously, numerical results a r e  not presently available for 

the two dimensional case. These results will appear in a future report. 
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Chapter 6 

CONCLUSIONS 

i 
It is the purpose of this chapter to briefly summarize the 

results presented in this report and to indicate the work that remains 

to be done before this study can be considered complete. It should 

be emphasized that this report is primarily intended to indicate the 

status of the study effort. It should also be made evident that the 

completion of the study amounts to reaching certain arbitrarily defined 

goals, certainly not exhaustion of the study area. 

6.1 Summary of Results 

6.1.1 Narrative Summary 

Problem Formulation. The study begins by heuristically 

deriving mathematical relations governing a class of attitude control 

and antenna steering problems. A scaling study of these relations 

reveals that there a re  no necessary parameters in the deterministic 

case and only one in the stochastic case. 

Hamilton- Jacobi Equation and Property Derivations. A 

Hamilton- Jacobi equation for the deterministic case is presented without 

elaboration. This equation is drawn directly from the control system 

literature. 

sufficient conditions for the solution of the original problem. 

Solution of this equation is known to yield necessary and 

For the stochastic case a Hamilton- Jacobi type equation is 

derived from the Chapman- Kolmogorov equation. This derivation is 
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presented in some detail, because the technique i s  not so well known. 

A list of properties pertaining to the cost surface and 

switching surfaces is presented for both the deterministic and stochastic 

casesi These properties serve as the boundary conditions for the 
ri 

Hamilton- Jacobi partial differential equations. 

propdrties represents a substantial step towards solving the equations. 

Description of these 

-- Solution of Deterministic Equations. The method of 

characteristic curves i s  used to solve the linear, first order Hamilton- 

Jacobi equations of the deterministic case. Some of these results have 

been presented before using similarity methods, but others were 

previously unknown. All of the results presented here a r e  derived 

from the basic boundary conditions represented by the selected list 

of properties. The algebraic manipulations involved in these solutions 

becomes immense, and it is shown that the classes of problems amenable 

to the methods used here is quite restricted. 

--- Analytic Treatment of Stochastic Equations. The success of 

analytical treatment of the stochastic cases was far smaller than in  the 

deterministic cases. Nevertheless, for the antenna steering problem, 

analytical treatment of the steady state situation was possible in a 

couple of ways. A similar treatment of the two-dimensional problem 

was unsuccessful. Some progress on the time dependent one-dimensional 

problem is reported. This leads to a nonlinear integral equation involving 

the known solution to a simpler one-dimensional problem. 
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Numerical Treatment of Stochastic Equations. A useful 

technique for the numerical solution of the one-dimensional equation is 

presented. This t echnique involves the simplest explicit-type numerical 

- approximation available for the equation. The computational results 

provide the first available set of switching curvesand cost surfaces for 

this problem. 

algorithm is presented; the computational results a r e  still to be achieved. 

6.1.2 Unique Contributions. 

For the two-dimensional case only a computational 

It is of interest to note the elements of the study as  reported 

here that do not appear elsewhere. These a re  as follows: 

1) 

This is primarily an engineering result. 

2) 

sufficient for solving the Hamilton- Jacobi type equations. 

These a re  of both theoretical and practical interest. 

The investigation of the essential problem parameters. 

The statement of a list of properties which a re  

3) 

Hamilton- Jacobi equation. 

The complete analytical solution of the deterministic 

This results in a complete set 

of switching surfaces and a complete definition of the optimum 

cost surface. 

4) 

for the stochastic one-dimensional case. 

and practical interest. 

5) 

time dependent one-dimensional problem. 

primarily of theoretical interest at present. 

These have theoretical and engineering value. 

The analytical derivation of steady state switching points 

This is of theoretical 

The derivation of a nonlinear integral equation for the 

This result is 
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6) The demonstration that analytical solution of even 

the steady state two-dimensional problem involves (presently) 

insurmountable difficulties. 

away from analytical treatment of the stochastic case. 

This result directed the efforts 

- 
7) A numerical solution to the stochastic problems. This 

has resulted, so far, in the first presentation of the switch- 

ing curves and optimum expected cost surface for the one- 

dimensional problem. These loci a r e  of considerable practical 

inter est. 

6.2 Work Remaining To Be Done 

It is obvious that the present 

study is incomplete. This section lists and briefly describes the efforts 

required to complete the investigation. Some of these efforts a re  listed 

for reference only, since they might well require more effort than the 

entire study to date. Topics in this latter category a re  appropriately 

identified. 

Investigate the Validity of the Stochastic Hamilton- Jacobi --- -- -- 
Type Equation. It is more or less assured that the derived Stochastic 

Hamilton- Jacobi type equation represents both necessary and sufficient 

conditions for the solution of the stochastic problems as did the equation 

for the deterministic case. A careful investigation of this facet of the 

equation is warranted. (For reference only) 

108 



- Derive the Hamilton- Jacobi Type Equation from Fokker - 

--_. Planck Theory Since there is a direct relationship between the Fokker- 

Planck equation and the Chapman-Kolmogorov equation, it should be 

possible to derive the Hamilton-Jacobi type equation directly from the 

former. This would tend to place the techniques used here more into 

the mainstream of modern stochastic system analysis. 

.Derive - the Property Lists Rigorously. The lists of properties 

presented in Chapter 2 have been justified rather than proved from first 

principles. It is of some theoretical interest to put these properties on 

a more mathematical basis. This is particularly true because the 

available results tend to link the Pontryagin Maximum Principle and 

Hamilton- Jacobi approaches more than was heretofore realized. (For 

reference only) 

Complete the Algebra for the Two-Dimensional Deterministic - - -  -.-- 

Problem. This set of details should be completed before the study can be 

considered finished. 

- Compare the Results of the Two-Dimensional Deterministic 

-- Problem with the Known Limiting Case Results. This is a complimentary 

activity to the previous one. 

--- Further Investigate - the Unsolved Simpler Two-Dimensional 

Stochastic - --- Steady State Problem. A two-dimensional stochastic problem 

involving bang-bang controls, which is simpler than Problem 1-3, wae 

identified in Chapter 4. This problem is presently unsolved. It appears 

that until this simpler problem is solved analytically one cannot expect 

to solve the more difficult problems posed here. (For reference only) 

109 



Further Investigate the Integral Equation for the Time 

P---- De endent Stochastic Problem. 

iteratively approximate the solution of the time dependent Hamilton- 

This integral equation could be used to 

Jacobi equation. Some of the properties of this equation a re  known, r 

but several more a re  required before a solution can be hoped for. (For 

reference only) 

Obtain Numerical Results for the Two-Dimensional - Stochastic -I_. - -- 

-- Problem. The algorithm for the two-di.mensiona1 case as derived in 

Chapter 5 has not been tried. This needs to be done. 

-- Investigate the Validity of the Numerical Methods. The 

numerical methods used to solve the stochastic Hamilton- Jacobi type 

equations appear valid5 but their sensitivity to parameter values and 

boundary condition treatment i s  presently largely unknown. 

investigation of these properties is essential to  achieving confidence in 

the numerical results. 

Some 
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